A Bayesian approach to identification of hybrid systems

被引:20
|
作者
Juloski, AL [1 ]
Weiland, S [1 ]
Heemels, WPMH [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1109/CDC.2004.1428599
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a novel procedure for the identification of hybrid systems in the piece-wise ARX form. The procedure consists of three steps: 1) parameter estimation, 2) classification of data points and 3) partition estimation. Our approach to parameter estimation is based on the gradual refinement of the a-priori information about the parameter values, using the Bayesian inference rule. Particle filters are used for a numerical implementation of the proposed parameter estimation procedure. Data points are subsequently classified to the mode which is most likely to have generated them. A modified version of the multi-category robust linear programming (MRLP) classification procedure, adjusted to use the information derived in the previous steps or the identification algorithm, is used for estimating the partition or the PWARX map. The proposed procedure is applied for the identification of the component placement process in pick-and-place machines.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 50 条
  • [1] A Bayesian approach to identification of hybrid systems
    Juloski, AL
    Weiland, S
    Heemels, WPMH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1520 - 1533
  • [2] Hierarchical identification of nonlinear hybrid systems in a Bayesian framework
    Madary, Ahmad
    Momeni, Hamid Reza
    Abate, Alessandro
    Larsen, Kim G.
    INFORMATION AND COMPUTATION, 2022, 289
  • [3] Information theoretical approach to identification of hybrid systems
    Pu, Li
    Hu, Jinchun
    Chen, Badong
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2008, 4981 : 650 - 653
  • [4] Identification of linear hybrid systems: a geometric approach
    Van Luong Le
    Lauer, Fabien
    Bloch, Gerard
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 830 - 835
  • [5] Sheep Identification Using a Hybrid Deep Learning and Bayesian Optimization Approach
    Salama, Aya
    Hassanien, Aboul Ellah
    Fahmy, Aly
    IEEE ACCESS, 2019, 7 : 31681 - 31687
  • [6] Online Identification of Time-Varying Systems: a Bayesian Approach
    Prando, G.
    Romeres, D.
    Chiuso, A.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3775 - 3780
  • [7] A Bayesian Framework for Large-Scale Identification of Nonlinear Hybrid Systems
    Madary, Ahmad
    Momeni, Hamid Reza
    Abate, Alessandro
    Larsen, Kim G.
    IFAC PAPERSONLINE, 2021, 54 (05): : 259 - 264
  • [8] Bayesian identification of structural parameters of hybrid mid-frequency systems
    Lecomte, C.
    Forster, J. J.
    Mace, B. R.
    Ferguson, N. S.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012), 2012, : 5015 - 5023
  • [9] A STABLE SPLINE CONVEX APPROACH TO HYBRID SYSTEMS IDENTIFICATION
    Pillonetto, Gianluigi
    Aravkin, Aleksandr Y.
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [10] A Bayesian Approach for Model Identification of LPV Systems with Uncertain Scheduling Variables
    Abbasi, Farshid
    Mohammadpour, Javad
    Toth, Roland
    Meskin, Nader
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 789 - 794