The Cauchy problem for 3-evolution equations with data in Gelfand-Shilov spaces

被引:6
|
作者
Arias Junior, Alexandre [1 ]
Ascanelli, Alessia [2 ]
Cappiello, Marco [3 ]
机构
[1] Univ Fed Parana, Dept Math, BR-81531980 Curitiba, Parana, Brazil
[2] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
[3] Univ Turin, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
p-evolution equations; Gelfand-Shilov spaces; Infinite-order pseudodifferential operators; P-EVOLUTION EQUATIONS; WELL-POSEDNESS; KDV EQUATION;
D O I
10.1007/s00028-022-00764-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for a third-order evolution operator P with (t, x)-depending coefficients and complex-valued lower-order terms. We assume the initial data to be Gevrey regular with an exponential decay at infinity, that is, the data belong to some Gelfand-Shilov space of type S. Under suitable assumptions on the decay at infinity of the imaginary parts of the coefficients of P we prove the existence of a solutionwith the sameGevrey regularity of the data andwe describe its behavior for vertical bar x vertical bar ->infinity.
引用
收藏
页数:40
相关论文
共 50 条