Inclusion Theorems for the Moyal Multiplier Algebras of Generalized Gelfand-Shilov Spaces

被引:1
|
作者
Soloviev, Michael [1 ]
机构
[1] Russian Acad Sci, IE Tamm Dept Theoret Phys, PN Lebedev Phys Inst, Leninskiy Prospekt 53, Moscow 119991, Russia
关键词
Deformation quantization; Weyl symbols; Moyal product; Multiplier algebras; Gelfand-Shilov spaces; Pseudodifferential operators; PSEUDODIFFERENTIAL-OPERATORS; TWISTED CONVOLUTION; STAR PRODUCT; ULTRADISTRIBUTIONS; LIMITS;
D O I
10.1007/s00020-021-02664-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Moyal multiplier algebras of the generalized Gelfand-Shilov spaces of type S contain Palamodov spaces of type E and the inclusion maps are continuous. We also give a direct proof that the Palamodov spaces are algebraically and topologically isomorphic to the strong duals of the spaces of convolutors for the corresponding spaces of type S. The obtained results provide a general and efficient way to describe the algebraic and continuity properties of pseudodifferential operators with symbols having an exponential or super-exponential growth at infinity.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Inclusion Theorems for the Moyal Multiplier Algebras of Generalized Gelfand–Shilov Spaces
    Michael Soloviev
    Integral Equations and Operator Theory, 2021, 93
  • [2] Structural theorems for Gelfand-Shilov spaces
    Budincevic, M.
    Perisic, D.
    Taskovic, M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (3-4) : 223 - 229
  • [3] The nuclearity of Gelfand-Shilov spaces and kernel theorems
    Debrouwere, Andreas
    Neyt, Lenny
    Vindas, Jasson
    COLLECTANEA MATHEMATICA, 2021, 72 (01) : 203 - 227
  • [4] ON GELFAND-SHILOV SPACES
    Lutsenko, A. V.
    Musin, I. Kh.
    Yulmukhametov, R. S.
    UFA MATHEMATICAL JOURNAL, 2023, 15 (03): : 88 - 96
  • [5] Equivalence of the Gelfand-Shilov spaces
    Chung, J
    Chung, SY
    Kim, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (03) : 828 - 839
  • [6] GELFAND-SHILOV SPACES FOR THE HANKEL TRANSFORM
    DURAN, AJ
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (02): : 137 - 151
  • [7] Microlocal analysis for Gelfand-Shilov spaces
    Rodino, Luigi
    Wahlberg, Patrik
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (05) : 2379 - 2420
  • [8] The wavelet transforms in Gelfand-Shilov spaces
    Pilipovic, Stevan
    Rakic, Dusan
    Teofanov, Nenad
    Vindas, Jasson
    COLLECTANEA MATHEMATICA, 2016, 67 (03) : 443 - 460
  • [9] LAGUERRE EXPANSIONS OF GELFAND-SHILOV SPACES
    DURAN, AJ
    JOURNAL OF APPROXIMATION THEORY, 1993, 74 (03) : 280 - 300
  • [10] Modulation Spaces, Gelfand-Shilov Spaces and Pseudodifferential Operators
    Nenad Teofanov
    Sampling Theory in Signal and Image Processing, 2006, 5 (2): : 225 - 242