On almost-Poisson structures in nonholonomic mechanics:: II.: The time-dependent framework

被引:18
|
作者
Cantrijn, F
de León, M
Marrero, JC
de Diego, DM
机构
[1] Univ Ghent, Dept Math Phys & Astron, B-9000 Ghent, Belgium
[2] CSIC, Inst Matemat & Fis Fundamental, E-28006 Madrid, Spain
[3] Univ La Laguna, Fac Matemat, Dept Matemat Fundamental, Tenerife, Spain
[4] Fac CC Econ & Empresariales, Dept Econ Aplicada Matemat, E-47011 Valladolid, Spain
关键词
D O I
10.1088/0951-7715/13/4/322
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The structure of the equations of motion of a time-dependent mechanical system, subject to time-dependent non-holonomic constraints, Is investigated in the Lagrangian as well as in the Hamiltonian setting. The treatment applies to systems with general nonlinear constraints, and the ambient space in which the constraint submanifold is embedded is equipped with a cosymplectic structure. In analogy with the autonomous case, it is sl:own that one can define an almost-Poisson structure on the constraint submanifold, which plays;I prominent role in the description of nonholonomic dynamics. Moreover, it is seen that the corresponding almost-Poisson bracket can also be interpreted as a Dirac-type bracket. Systems with a Lagrangian of mechanical type sind affine non-holonomic constraints are treated as a special case and two examples are discussed. AMS classification scheme numbers: 58F05, 70F25. 70Hxx.
引用
收藏
页码:1379 / 1409
页数:31
相关论文
共 50 条
  • [11] Hamiltonian time-dependent mechanics
    Sardanashvily, G. A.
    Journal of Mathematical Physics, 39 (05):
  • [12] Time-dependent contact mechanics
    de Leon, Manuel
    Gaset, Jordi
    Gracia, Xavier
    Munoz-Lecanda, Miguel C.
    Rivas, Xavier
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1149 - 1183
  • [13] Time-dependent contact mechanics
    Manuel de León
    Jordi Gaset
    Xavier Gràcia
    Miguel C. Muñoz-Lecanda
    Xavier Rivas
    Monatshefte für Mathematik, 2023, 201 : 1149 - 1183
  • [14] Hamiltonian time-dependent mechanics
    Sardanashvily, GA
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2714 - 2729
  • [15] Time-dependent semiclassical mechanics
    Sepulveda, MA
    Grossmann, F
    ADVANCES IN CHEMICAL PHYSICS, VOL 96, 1996, 96 : 191 - 304
  • [16] Wave equations with time-dependent dissipation II. Effective dissipation
    Wirth, Jens
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (01) : 74 - 103
  • [17] TOPICS IN TIME-DEPENDENT STATISTICAL MECHANICS
    BERNE, BJ
    FORSTER, D
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1971, 22 : 563 - &
  • [18] THE STATISTICAL MECHANICS OF TIME-DEPENDENT PHENOMENA
    MORI, H
    PROGRESS OF THEORETICAL PHYSICS, 1953, 9 (04): : 470 - 472
  • [19] Constraints in Hamiltonian time-dependent mechanics
    Mangiarotti, L
    Sardanashvily, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2858 - 2876
  • [20] TIME-DEPENDENT MECHANICS OF ELASTIN NETWORK
    Zou, Yu
    Xu, Bin
    Chow, Ming-Jay
    Zhang, Katherine Yanhang
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2009, PT A AND B, 2009, : 1291 - 1292