COMPACT EMBEDDINGS FOR SOBOLEV SPACES OF VARIABLE EXPONENTS AND EXISTENCE OF SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING THE p(x)-LAPLACIAN AND ITS CRITICAL EXPONENT

被引:0
|
作者
Mizuta, Yoshihiro [1 ]
Ohno, Takao [2 ]
Shimomura, Tetsu [3 ]
Shioji, Naoki [4 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398521, Japan
[2] Hiroshima Natl Coll Maritime Technol, Osakikamijima, Hiroshima 7250231, Japan
[3] Hiroshima Univ, Dept Math, Grad Sch Educ, Higashihiroshima 7398524, Japan
[4] Yokohama Natl Univ, Dept Math, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
关键词
Sobolev spaces of variable exponents; compact embeddings; nonlinear elliptic problems; GENERALIZED LEBESGUE; RIESZ-POTENTIALS; EQUATIONS; TOPOLOGY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a sufficient condition for the compact embedding from W-0(k,p(.))(Omega) to L-q(.)(Omega) in case ess in f(x epsilon Omega)(Np(x)/(N - kp(x)) - q(x)) = 0, where Omega is a bounded open set in R-N. As an application, we find a nontrivial nonnegative weak solution of the nonlinear elliptic equation -div (|del u(x)|(p(x)-2)del u(x)) = |u(x)|(q(x)-2)u(x) = in Omega, u(x) = 0 on partial derivative Omega. We also consider the existence of a weak solution to the problem above even if the embedding is not compact.
引用
收藏
页码:115 / 130
页数:16
相关论文
共 50 条