LOCAL AND NON-LOCAL DIRICHLET FORMS ON THE SIERPITSKI CARPET

被引:10
|
作者
Grigor'yan, Alexander [1 ]
Yang, Meng [1 ,2 ]
机构
[1] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Sierpinski carpet; non-local quadratic form; walk dimension; Gamma-convergence; Brownian motion; effective resistance; heat kernel; HEAT KERNELS; BROWNIAN-MOTION; DIFFUSION-PROCESSES; HARMONIC-ANALYSIS; RESISTANCE; FRACTALS;
D O I
10.1090/tran/7753
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a purely analytic construction of a self-similar local regular Dirichlet form on the Sierpinski carpet using approximation of stable-like non-local closed forms which gives an answer to an open problem in analysis on fractals.
引用
收藏
页码:3985 / 4030
页数:46
相关论文
共 50 条