Intrinsic Ultracontractivity and Ground State Estimates of Non-local Dirichlet forms on Unbounded Open Sets

被引:0
|
作者
Xin Chen
Panki Kim
Jian Wang
机构
[1] Shanghai Jiao Tong University,Department of Mathematics
[2] Seoul National University,Department of Mathematics
[3] Fujian Normal University,College of Mathematics and Informatics & Fujian Key Laboratory of Mathematical Analysis and Applications (FJKLMAA)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a large class of symmetric Markov processes X=(Xt)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X=(X_t)_{t\ge0}}$$\end{document} on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^d}$$\end{document} generated by non-local Dirichlet forms, which include jump processes with small jumps of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha}$$\end{document}-stable-like type and with large jumps of super-exponential decay. Let D⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\subset \mathbb{R}^d}$$\end{document} be an open (not necessarily bounded and connected) set, and XD=(XtD)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X^D=(X_t^D)_{t \ge 0}}$$\end{document} be the killed process of X on exiting D. We obtain explicit criterion for the compactness and the intrinsic ultracontractivity of the Dirichlet Markov semigroup (PtD)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(P^{D}_t)_{t\ge0}}$$\end{document} of XD. When D is a horn-shaped region, we further obtain two-sided estimates of ground state in terms of jumping kernel of X and the reference function of the horn-shaped region D.
引用
收藏
页码:67 / 117
页数:50
相关论文
共 50 条
  • [1] Intrinsic Ultracontractivity and Ground State Estimates of Non-local Dirichlet forms on Unbounded Open Sets
    Chen, Xin
    Kim, Panki
    Wang, Jian
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (01) : 67 - 117
  • [2] Intrinsic Ultracontractivity for Stable Semigroups on Unbounded Open Sets
    Kwasnicki, Mateusz
    [J]. POTENTIAL ANALYSIS, 2009, 31 (01) : 57 - 77
  • [3] Intrinsic Ultracontractivity for Stable Semigroups on Unbounded Open Sets
    Mateusz Kwaśnicki
    [J]. Potential Analysis, 2009, 31 : 57 - 77
  • [4] Progressive intrinsic ultracontractivity and heat kernel estimates for non-local Schrodinger operators
    Kaleta, Kamil
    Schilling, Rene L.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (06)
  • [5] ESTIMATES OF HEAT KERNELS FOR NON-LOCAL REGULAR DIRICHLET FORMS
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (12) : 6397 - 6441
  • [6] Compactness of Semigroups Generated by Symmetric Non-Local Dirichlet Forms with Unbounded Coefficients
    Yuichi Shiozawa
    Jian Wang
    [J]. Potential Analysis, 2023, 58 : 373 - 392
  • [7] Compactness of Semigroups Generated by Symmetric Non-Local Dirichlet Forms with Unbounded Coefficients
    Shiozawa, Yuichi
    Wang, Jian
    [J]. POTENTIAL ANALYSIS, 2023, 58 (02) : 373 - 392
  • [8] Stability of Heat Kernel Estimates for Symmetric Non-Local Dirichlet Forms
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 271 (1330) : 1 - +
  • [9] Littlewood-Paley-Stein Estimates for Non-Local Dirichlet Forms
    Li, Huaiqian
    Wang, Jian
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2021, 143 (02): : 401 - 434