Maximizing a Submodular Function with Viability Constraints

被引:0
|
作者
Dvorak, Wolfgang [1 ]
Henzinger, Monika [1 ]
Williamson, David P. [2 ]
机构
[1] Univ Vienna, Fak Informat, Wahringerstr 29, A-1090 Vienna, Austria
[2] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
来源
ALGORITHMS - ESA 2013 | 2013年 / 8125卷
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
NATURE-RESERVE SELECTION; PHYLOGENETIC DIVERSITY; SET FUNCTIONS; APPROXIMATIONS; ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of maximizing a monotone submodular function with viability constraints. This problem originates from computational biology, where we are given a phylogenetic tree over a set of species and a directed graph, the so-called food web, encoding viability constraints between these species. These food webs usually have constant depth. The goal is to select a subset of k species that satisfies the viability constraints and has maximal phylogenetic diversity. As this problem is known to be NP-hard, we investigate approximation algorithm. We present the first constant factor approximation algorithm if the depth is constant. Its approximation ratio is (1-1/root e). This algorithm not only applies to phylogenetic trees with viability constraints but for arbitrary monotone submodular set functions with viability constraints. Second, we show that there is no (1-1/e + epsilon)-approximation algorithm for our problem setting (even for additive functions) and that there is no approximation algorithm for a slight extension of this setting.
引用
收藏
页码:409 / 420
页数:12
相关论文
共 50 条
  • [31] On streaming algorithms for maximizing a supermodular function plus a MDR-submodular function on the integer lattice
    Jingjing Tan
    Yicheng Xu
    Dongmei Zhang
    Xiaoqing Zhang
    Journal of Combinatorial Optimization, 2023, 45
  • [32] A new greedy strategy for maximizing monotone submodular function under a cardinality constraint
    Lu, Cheng
    Yang, Wenguo
    Gao, Suixiang
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (02) : 235 - 247
  • [33] On streaming algorithms for maximizing a supermodular function plus a MDR-submodular function on the integer lattice
    Tan, Jingjing
    Xu, Yicheng
    Zhang, Dongmei
    Zhang, Xiaoqing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (02)
  • [34] Maximizing the Differences Between a Monotone DR-Submodular Function and a Linear Function on the Integer Lattice
    Zhang, Zhen-Ning
    Du, Dong-Lei
    Ma, Ran
    Wu, Dan
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (03) : 795 - 807
  • [35] Monotone k-Submodular Function Maximization with Size Constraints
    Ohsaka, Naoto
    Yoshida, Yuichi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [36] A Note on Submodular Function Minimization with Covering Type Linear Constraints
    Kamiyama, Naoyuki
    ALGORITHMICA, 2018, 80 (10) : 2957 - 2971
  • [37] A new greedy strategy for maximizing monotone submodular function under a cardinality constraint
    Cheng Lu
    Wenguo Yang
    Suixiang Gao
    Journal of Global Optimization, 2022, 83 : 235 - 247
  • [38] Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
    Fadaei, Salman
    Fazli, MohammadAmin
    Safari, MohammadAli
    OPERATIONS RESEARCH LETTERS, 2011, 39 (06) : 447 - 451
  • [39] A Note on Submodular Function Minimization with Covering Type Linear Constraints
    Naoyuki Kamiyama
    Algorithmica, 2018, 80 : 2957 - 2971
  • [40] Efficient Submodular Function Maximization under Linear Packing Constraints
    Azar, Yossi
    Gamzu, Iftah
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 38 - 50