Maximizing a Submodular Function with Viability Constraints

被引:0
|
作者
Dvorak, Wolfgang [1 ]
Henzinger, Monika [1 ]
Williamson, David P. [2 ]
机构
[1] Univ Vienna, Fak Informat, Wahringerstr 29, A-1090 Vienna, Austria
[2] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
来源
ALGORITHMS - ESA 2013 | 2013年 / 8125卷
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
NATURE-RESERVE SELECTION; PHYLOGENETIC DIVERSITY; SET FUNCTIONS; APPROXIMATIONS; ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of maximizing a monotone submodular function with viability constraints. This problem originates from computational biology, where we are given a phylogenetic tree over a set of species and a directed graph, the so-called food web, encoding viability constraints between these species. These food webs usually have constant depth. The goal is to select a subset of k species that satisfies the viability constraints and has maximal phylogenetic diversity. As this problem is known to be NP-hard, we investigate approximation algorithm. We present the first constant factor approximation algorithm if the depth is constant. Its approximation ratio is (1-1/root e). This algorithm not only applies to phylogenetic trees with viability constraints but for arbitrary monotone submodular set functions with viability constraints. Second, we show that there is no (1-1/e + epsilon)-approximation algorithm for our problem setting (even for additive functions) and that there is no approximation algorithm for a slight extension of this setting.
引用
收藏
页码:409 / 420
页数:12
相关论文
共 50 条
  • [1] Maximizing a Submodular Function with Viability Constraints
    Dvorak, Wolfgang
    Henzinger, Monika
    Williamson, David P.
    ALGORITHMICA, 2017, 77 (01) : 152 - 172
  • [2] Maximizing a Submodular Function with Viability Constraints
    Wolfgang Dvořák
    Monika Henzinger
    David P. Williamson
    Algorithmica, 2017, 77 : 152 - 172
  • [3] Maximizing Submodular Functions under Submodular Constraints
    Padmanabhan, Madhavan R.
    Zhu, Yanhui
    Basu, Samik
    Pavan, A.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1618 - 1627
  • [4] MAXIMIZING A k-SUBMODULAR FUNCTION WITH p-SYSTEM CONSTRAINTS
    Ye, Hanlu
    Li, Min
    Zhou, Yang
    Liu, Qian
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024,
  • [5] Maximizing a class of submodular utility functions with constraints
    Yu, Jiajin
    Ahmed, Shabbir
    MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 145 - 164
  • [6] Maximizing a class of submodular utility functions with constraints
    Jiajin Yu
    Shabbir Ahmed
    Mathematical Programming, 2017, 162 : 145 - 164
  • [7] The Adaptive Complexity of Maximizing a Submodular Function
    Balkanski, Eric
    Singer, Yaron
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 1138 - 1151
  • [8] Maximizing a non-decreasing non-submodular function subject to various types of constraints
    Cheng Lu
    Wenguo Yang
    Ruiqi Yang
    Suixiang Gao
    Journal of Global Optimization, 2022, 83 : 727 - 751
  • [9] Maximizing a non-decreasing non-submodular function subject to various types of constraints
    Lu, Cheng
    Yang, Wenguo
    Yang, Ruiqi
    Gao, Suixiang
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (04) : 727 - 751
  • [10] Maximizing Submodular Set Functions Subject to Multiple Linear Constraints
    Kulik, Ariel
    Shachnai, Hadas
    Tamir, Tami
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 545 - +