QCD Topological Susceptibility from the Nonlocal Chiral Quark Model

被引:0
|
作者
Nam, Seung-Il [1 ,2 ]
Kao, Chung-Wen [3 ,4 ]
机构
[1] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[2] APCTP, Pohang 37673, South Korea
[3] Chung Yuan Christian Univ, Dept Phys, Chungli 32023, Taiwan
[4] Chung Yuan Christian Univ, Ctr High Energy Phys, Chungli 32023, Taiwan
关键词
QCD topological susceptibility; Topological charge-density operator; Nonlocal chiral-quark model; Bosonization; Liquid-instanton configuration; Large-N-c limit; Witten-Veneziano formula; Leutwyler-Smilga formula; SYMMETRY-BREAKING; INSTANTON VACUUM; U(1) PROBLEM; SPECTRUM; FLAVORS; MASS;
D O I
10.3938/jkps.70.1027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantum chromodynamics (QCD) topological susceptibility. by using the semi-bosonized nonlocal chiral-quark model (SB-NL(X)QM) for the leading large-N-c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass (m(u), (d), m(s)) approximate to (5, 135) MeV. To compute X, we derive the local topological charge-density operator Q(t) (x) from the effective action of SB-N(X)QM. We verify that the derived expression for X in our model satisfies the WittenVeneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with (p) over bar= 1/ 3 fm and (R) over bar = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain X = (167.67MeV)(4), which is comparable with the empirical value X = (175 +/- 5MeV) 4 whereas it turns out that.QL = (194.30MeV) 4 in the quenched limit. Thus, we conclude that the value of. will be reduced around 10 similar to 20% by the dynamical-quark contribution.
引用
收藏
页码:1027 / 1036
页数:10
相关论文
共 50 条
  • [31] Hybrid stars within a covariant, nonlocal chiral quark model
    Blaschke, D. B.
    Gomez Dumm, D.
    Grunfeld, A. G.
    Klahn, T.
    Scoccola, N. N.
    PHYSICAL REVIEW C, 2007, 75 (06):
  • [32] From QCD to quark potential model
    He, HX
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1996, 26 (01) : 79 - 84
  • [33] From QCD to Quark Potential Model
    Commun Theor Phys, 1 (79):
  • [34] Extended Nonlocal Chiral-Quark Model for the Heavy-Light Quark Systems
    Nam, Seung-il
    FEW-BODY SYSTEMS, 2013, 54 (7-10) : 1033 - 1036
  • [35] Pion susceptibility of the QCD vacuum from an effective quark-quark interaction
    Zong, HS
    Qi, S
    Chen, W
    Sun, WM
    Zhao, EG
    PHYSICS LETTERS B, 2003, 576 (3-4) : 289 - 296
  • [36] Vector susceptibility of QCD vacuum from an effective quark-quark interaction
    Zong, HS
    Shi, Q
    Wei, C
    Wu, XH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (06) : 675 - 680
  • [37] Tensor susceptibility of the QCD vacuum from an effective quark-quark interaction
    Yang, HT
    Zong, HS
    Ping, HL
    Wang, F
    PHYSICS LETTERS B, 2003, 557 (1-2) : 33 - 37
  • [38] Topological susceptibility in two-flavor lattice QCD with exact chiral symmetry
    Aoki, S.
    Chiu, T. W.
    Fukaya, H.
    Hashimoto, S.
    Hsieh, T. H.
    Kaneko, T.
    Matsufuru, H.
    Noaki, J.
    Ogawa, K.
    Onogi, T.
    Yamada, N.
    PHYSICS LETTERS B, 2008, 665 (04) : 294 - 297
  • [39] QCD axion and topological susceptibility in chiral effective Lagrangian models at finite temperature
    Bottaro, Salvatore
    Meggiolaro, Enrico
    PHYSICAL REVIEW D, 2020, 102 (01)
  • [40] Quark distribution in the pion from QCD sum rules with nonlocal condensates
    Belitsky, AV
    PHYSICS LETTERS B, 1996, 386 (1-4) : 359 - 369