QCD Topological Susceptibility from the Nonlocal Chiral Quark Model

被引:0
|
作者
Nam, Seung-Il [1 ,2 ]
Kao, Chung-Wen [3 ,4 ]
机构
[1] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[2] APCTP, Pohang 37673, South Korea
[3] Chung Yuan Christian Univ, Dept Phys, Chungli 32023, Taiwan
[4] Chung Yuan Christian Univ, Ctr High Energy Phys, Chungli 32023, Taiwan
关键词
QCD topological susceptibility; Topological charge-density operator; Nonlocal chiral-quark model; Bosonization; Liquid-instanton configuration; Large-N-c limit; Witten-Veneziano formula; Leutwyler-Smilga formula; SYMMETRY-BREAKING; INSTANTON VACUUM; U(1) PROBLEM; SPECTRUM; FLAVORS; MASS;
D O I
10.3938/jkps.70.1027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantum chromodynamics (QCD) topological susceptibility. by using the semi-bosonized nonlocal chiral-quark model (SB-NL(X)QM) for the leading large-N-c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass (m(u), (d), m(s)) approximate to (5, 135) MeV. To compute X, we derive the local topological charge-density operator Q(t) (x) from the effective action of SB-N(X)QM. We verify that the derived expression for X in our model satisfies the WittenVeneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with (p) over bar= 1/ 3 fm and (R) over bar = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain X = (167.67MeV)(4), which is comparable with the empirical value X = (175 +/- 5MeV) 4 whereas it turns out that.QL = (194.30MeV) 4 in the quenched limit. Thus, we conclude that the value of. will be reduced around 10 similar to 20% by the dynamical-quark contribution.
引用
收藏
页码:1027 / 1036
页数:10
相关论文
共 50 条
  • [21] The topological susceptibility and fπ from lattice QCD
    Hart, A
    Teper, M
    PHYSICS LETTERS B, 2001, 523 (3-4) : 280 - 292
  • [22] Nonlocal quark model beyond mean field and QCD phase transition
    Blaschke, D.
    Buballa, M.
    Radzhabov, A. E.
    Volkov, M. K.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2010, 198 : 51 - 54
  • [23] Topological susceptibility and contact term in QCD: A toy model
    Thomas, Evan
    Zhitnitsky, Ariel R.
    PHYSICAL REVIEW D, 2012, 85 (04):
  • [24] QCD condensates and the pion wave functions in the nonlocal chiral model
    Praszalowicz, M
    Rostworowski, A
    PHYSICAL REVIEW D, 2002, 66 (05)
  • [25] Pion generalized distribution amplitudes in the nonlocal chiral quark model
    Praszalowicz, Michal
    Rostworowski, Andrzej
    2003, Jagellonian University (34):
  • [26] Fragmentation functions of pions and kaons in the nonlocal chiral quark model
    Kao, Chung Wen
    Yang, Dong Jing
    Jiang, Fu Jiun
    Nam, Seng-il
    INPC 2013 - INTERNATIONAL NUCLEAR PHYSICS CONFERENCE, VOL. 2, 2014, 66
  • [27] Vector and axial vector mesons in a nonlocal chiral quark model
    Izzo Villafane, M. F.
    Gomez Dumm, D.
    Scoccola, N. N.
    PHYSICAL REVIEW D, 2016, 94 (05)
  • [28] The nonlocal chiral quark model and the muon g – 2 problem
    A. E. Dorokhov
    A. E. Radzhabov
    F. A. Shamakhov
    A. S. Zhevlakov
    Physics of Particles and Nuclei, 2016, 47 : 370 - 386
  • [29] Pion Generalized Distribution Amplitudes in the nonlocal chiral quark model
    Praszalowicz, M
    Rostworowski, A
    ACTA PHYSICA POLONICA B, 2003, 34 (05): : 2699 - 2729
  • [30] Unpolarized dihadron fragmentation functions in nonlocal chiral quark model
    Yang, Dong-Jing
    Jiang, Fu-Jiun
    Li, Chian-De
    Kao, Chung-Wen
    Nam, Seung-il
    CHINESE JOURNAL OF PHYSICS, 2021, 71 : 248 - 259