Variational Analysis For Some Frictional Contact Problems

被引:6
|
作者
Kaki, L. Ait [1 ]
Denche, M. [2 ]
机构
[1] Univ Ferhat Abbas Setif 1, Dept Math, Setif, Algeria
[2] Univ Constantine 1, Dept Math, Constantine, Algeria
来源
关键词
Evolutionary variational inequality; Fixed point; Frictional contact; Piezoelectric material; VISCOELASTIC-CONTACT; PIEZOELECTRIC BODY; INEQUALITIES;
D O I
10.5269/bspm.v38i7.44258
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of evolutionary variational problems which describes the static frictional contact between a piezoelectric body and a conductive obstacle. The formulation is in a form of coupled system involving the displacement and electric potential fields. We provide the existence of unique weak solution of the problems. The proof is based on the evolutionary variational inequalities and Banach's fixed point theorem.
引用
收藏
页码:21 / 36
页数:16
相关论文
共 50 条
  • [31] Shakedown in frictional contact problems
    Barber, J. R.
    Klarbring, A.
    Ciavarella, M.
    PROCEEDINGS OF THE ASME/STLE INTERNATIONAL JOINT TRIBOLOGY CONFERENCE, PTS A AND B, 2008, : 517 - 519
  • [32] On Abstract Variational Inequalities in Viscoplasticity with Frictional Contact
    M. Delost
    C. Fabre
    Journal of Optimization Theory and Applications, 2007, 133 : 131 - 150
  • [33] On abstract variational inequalities in viscoplasticity with frictional contact
    Delost, M.
    Fabre, C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 133 (02) : 131 - 150
  • [34] Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation
    Stupkiewicz, Stanislaw
    Lengiewicz, Jakub
    Korelc, Joze
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (33-36) : 2165 - 2176
  • [35] Shape sensitivity analysis of large deformation frictional contact problems
    Stupkiewicz, S
    Korelc, J
    Dutko, M
    Rodic, T
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (33) : 3555 - 3581
  • [36] A mixed variational approach for modeling frictional contact problems with normal compliance in electro-elasticity
    Benkhira, El Hassan
    El Yamouni, Ouiame
    Fakhar, Rachid
    Mandyly, Youssef
    ACTA MECHANICA, 2024, 235 (11) : 6775 - 6790
  • [37] Primal and Dual Variational Formulation of a Frictional Contact Problem
    Mircea Sofonea
    David Danan
    Cong Zheng
    Mediterranean Journal of Mathematics, 2016, 13 : 857 - 872
  • [38] Error control in frictional contact problems
    Rieger, A
    Wriggers, P
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 697 - 706
  • [39] Covariant description for frictional contact problems
    K. Schweizerhof
    A. Konyukhov
    Computational Mechanics, 2005, 35 : 190 - 213
  • [40] A mixed variational formulation for a piezoelectric frictional contact problem
    Matei, Andaluzia
    Sofonea, Mircea
    IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (02) : 334 - 354