Variational Analysis For Some Frictional Contact Problems

被引:6
|
作者
Kaki, L. Ait [1 ]
Denche, M. [2 ]
机构
[1] Univ Ferhat Abbas Setif 1, Dept Math, Setif, Algeria
[2] Univ Constantine 1, Dept Math, Constantine, Algeria
来源
关键词
Evolutionary variational inequality; Fixed point; Frictional contact; Piezoelectric material; VISCOELASTIC-CONTACT; PIEZOELECTRIC BODY; INEQUALITIES;
D O I
10.5269/bspm.v38i7.44258
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of evolutionary variational problems which describes the static frictional contact between a piezoelectric body and a conductive obstacle. The formulation is in a form of coupled system involving the displacement and electric potential fields. We provide the existence of unique weak solution of the problems. The proof is based on the evolutionary variational inequalities and Banach's fixed point theorem.
引用
收藏
页码:21 / 36
页数:16
相关论文
共 50 条
  • [21] Bifurcations and instabilities in some finite dimensional frictional contact problems
    Vola, D
    Da Costa, P
    Barbarin, S
    Martins, JAC
    Raous, M
    IUTAM SYMPOSIUM ON UNILATERAL MULTIBODY CONTACTS, 2000, 72 : 179 - 190
  • [22] Numerical analysis of evolutionary mixed variational problems: Applications in modeling asphalt pavements with interlayer frictional contact conditions
    Zhang, Zhizhuo
    Barboteu, Mikael
    Nie, Xiaobing
    Cao, Jinde
    APPLIED NUMERICAL MATHEMATICS, 2025, 209 : 208 - 231
  • [23] FINITE-ELEMENT ANALYSIS OF FRICTIONAL CONTACT PROBLEMS
    BATHE, KJ
    MIJAILOVICH, S
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1988, 7 : 31 - 45
  • [24] Analysis of a Class of Frictional Contact Problems for the Bingham Fluid
    Mohamed Selmani
    Boubakeur Merouani
    Lynda Selmani
    Mediterranean Journal of Mathematics, 2005, 2 : 113 - 124
  • [25] Analysis of two frictional viscoplastic contact problems with damage
    Campo, M.
    Fernandez, J. R.
    Hoarau-Mantel, T. -V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) : 180 - 197
  • [26] Analysis of a class of frictional contact problems for the Bingham fluid
    Selmani, Mohamed
    Merouani, Boubakeur
    Selmani, Lynda
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (01) : 113 - 124
  • [27] On elasto-plastic finite element analysis of some frictional contact problems with large sliding
    Ling, WH
    Stolarski, HK
    ENGINEERING COMPUTATIONS, 1997, 14 (05) : 558 - &
  • [28] A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems
    Migorski, Stanislaw
    Ogorzaly, Justyna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 685 - 702
  • [29] ALMOST HISTORY-DEPENDENT VARIATIONAL-HEMIVARIATIONAL INEQUALITY FOR FRICTIONAL CONTACT PROBLEMS
    Migorski, Stanislaw
    Paczka, Dariusz
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 4362 - 4390
  • [30] A new class of quasistatic frictional contact problems governed by a variational-hemivariational inequality
    Migorski, Stanislaw
    Gamorski, Piotr
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 583 - 602