A study of quantum Berezinskii-Kosterlitz-Thouless transition for parity-time symmetric quantum criticality

被引:4
|
作者
Sarkar, Sujit [1 ,2 ]
机构
[1] Poornaprajna Inst Sci Res, Dept Theoret Sci, 4 Sadashivanagar, Bangalore 560080, Karnataka, India
[2] Poornaprajna Inst Sci Res, Bidalur Post, Bangalore 562110, Karnataka, India
关键词
D O I
10.1038/s41598-021-84485-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism governs the critical behavior of a wide range of many-body systems. We show here that this phenomenon is not restricted to conventional many body system but also for the strongly correlated parity-time (PT) symmetry quantum criticality. We show explicitly behaviour of topological excitation for the real and imaginary part of the potential are different through the analysis of second order and third order renormalization group (RG). One of the most interesting feature that we observe from our study the presence of hidden QBKT and also conventional QBKT for the real part of the potential whereas there is no such evidence for the imaginary part of the potential. We also present the exact solution for the RG flow lines. We show explicitly how the physics of single field double frequencies sine-Gordon Hamiltonian effectively transform to the dual field double frequencies sine-Gordon Hamiltonian for a certain regime of parameter space. This is the first example in any quantum many body systems. We present the results of second order and third order RG flow results explicitly for the real and imaginary part of the potential. This PT symmetric system can be experimentally tested in ultra-cold atoms. This work provides a new perspective for the PT symmetric quantum criticality.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Berezinskii-Kosterlitz-Thouless transition - A universal neural network study with benchmarks
    Tseng, Y-H
    Jiang, F-J
    [J]. RESULTS IN PHYSICS, 2022, 33
  • [32] The Berezinskii-Kosterlitz-Thouless transition and correlations in the XY kagome antiferromagnet
    Cherepanov, VB
    Kolokolov, IV
    Podivilov, EV
    [J]. JETP LETTERS, 2001, 74 (12) : 596 - 599
  • [33] Unconventional Berezinskii-Kosterlitz-Thouless Transition in the Multicomponent Polariton System
    Dagvadorj, G.
    Comaron, P.
    Szyma, M. H.
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (13)
  • [34] Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu D.
    Tsiok, E. N.
    [J]. PHYSICS-USPEKHI, 2017, 60 (09) : 857 - 885
  • [35] Berezinskii-Kosterlitz-Thouless transition in homogeneously disordered superconducting films
    Koenig, E. J.
    Levchenko, A.
    Protopopov, I. V.
    Gornyi, I. V.
    Burmistrov, I. S.
    Mirlin, A. D.
    [J]. PHYSICAL REVIEW B, 2015, 92 (21)
  • [36] Berezinskii-Kosterlitz-Thouless transition from neural network flows
    Ng, Kwai-Kong
    Huang, Ching-Yu
    Lin, Feng-Li
    [J]. PHYSICAL REVIEW E, 2023, 108 (03)
  • [37] Berezinskii-Kosterlitz-Thouless transition in disordered multichannel Luttinger liquids
    Jones, Max
    Lerner, Igor V.
    Yurkevich, Igor V.
    [J]. PHYSICAL REVIEW B, 2017, 96 (17)
  • [38] Simulating the Berezinskii-Kosterlitz-Thouless transition with the complex Langevin algorithm
    Heinen, Philipp
    Gasenzer, Thomas
    [J]. PHYSICAL REVIEW A, 2023, 108 (05)
  • [39] Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films
    Mironov, Alexey Yu.
    Silevitch, Daniel M.
    Proslier, Thomas
    Postolova, Svetlana V.
    Burdastyh, Maria V.
    Gutakovskii, Anton K.
    Rosenbaum, Thomas F.
    Vinokur, Valerii V.
    Baturina, Tatyana I.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [40] Berezinskii-Kosterlitz-Thouless phase transition in systems with exotic symmetries
    [J]. JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1996, 63 (09):