Vision-based displacement measurement enhanced by super-resolution using generative adversarial networks

被引:27
|
作者
Sun, Chujin [1 ]
Gu, Donglian [2 ]
Zhang, Yi [1 ]
Lu, Xinzheng [1 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, China Educ Minist, Key Lab Civil Engn Safety & Durabil, Beijing 100084, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Res Inst Urbanizat & Urban Safety, Beijing, Peoples R China
来源
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
computer vision; displacement measurement; generative adversarial networks; super-resolution; surveillance video cameras; DIGITAL IMAGE CORRELATION; COMPUTER VISION; DYNAMIC DISPLACEMENT; CIVIL INFRASTRUCTURE; DAMAGE DETECTION; OPTICAL-FLOW; FEATURES; RESOLUTION; SYSTEM;
D O I
10.1002/stc.3048
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Monitoring the deformation or displacement response of buildings is critical for structural safety. Recently, the development of computer vision has led to extensive research on the application of vision-based measurements in the structural monitoring. This enables the use of urban surveillance video cameras, which are widely installed and can produce numerous images and videos of urban scenes to measure the structural displacement. However, the structural displacement measurement may be inaccurate owing to the limited hardware resolution of the surveillance video cameras or the long distance from the cameras to the monitored targets. To this end, this study proposes a method to improve the displacement measurement accuracy using a deep learning super-resolution model based on generative adversarial networks. The proposed method achieves texture detail enhancement of low-resolution images or videos by supplementing high-resolution photographs of the target, thus improving the accuracy of the vision-based displacement measurement. The proposed method shows good accuracy and stability in both the static and dynamic experimental validations compared with the original low-resolution images/video and interpolation-based super-resolution images/video. In conclusion, the proposed method can support the displacement measurement of buildings and infrastructures based on urban surveillance video cameras.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Underwater Image Super-Resolution Based on the Combination of Generative Adversarial Networks and Transformer
    Trung Nguyen Quoc
    Nguyen Pham Thi Thao
    Viet-Tuan Le
    Vinh Truong Hoang
    Surinwarangkoon, Thongchai
    INTELLIGENCE OF THINGS: TECHNOLOGIES AND APPLICATIONS, ICIT 2024, VOL 2, 2025, 230 : 3 - 12
  • [42] GENERATIVE ADVERSARIAL NETWORKS AND PERCEPTUAL LOSSES FOR VIDEO SUPER-RESOLUTION
    Lucas, Alice
    Lopez-Tapia, Santiago
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 51 - 55
  • [43] RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution
    Zhang, Wenlong
    Liu, Yihao
    Dong, Chao
    Qiao, Yu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3096 - 3105
  • [44] Generative adversarial networks for hyperspectral image spatial super-resolution
    Jiang Yilin
    Shao Ran
    Tang Sanqiang
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2020, 27 (04) : 8 - 16
  • [45] ID Preserving Face Super-Resolution Generative Adversarial Networks
    Li, Jinning
    Zhou, Yichen
    Ding, Jie
    Chen, Cen
    Yang, Xulei
    IEEE ACCESS, 2020, 8 : 138373 - 138381
  • [46] DPSRGAN: Dilation Patch Super-Resolution Generative Adversarial Networks
    Mirchandani, Kapil
    Chordiya, Kushal
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [47] Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution
    Lucas, Alice
    Lopez-Tapia, Santiago
    Molina, Rafael
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (07) : 3312 - 3327
  • [48] Hierarchical Generative Adversarial Networks for Single Image Super-Resolution
    Chen, Weimin
    Ma, Yuqing
    Liu, Xianglong
    Yuan, Yi
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 355 - 364
  • [49] Image super-resolution based on self-similarity generative adversarial networks
    Wang, Shuang
    Sun, Zhengxing
    Li, Qian
    IET IMAGE PROCESSING, 2023, 17 (01) : 157 - 165
  • [50] Improving the spatial resolution of solar images using super-resolution diffusion generative adversarial networks
    Song, Wei
    Ma, Ying
    Sun, Haoying
    Zhao, Xiaobing
    Lin, Ganghua
    ASTRONOMY & ASTROPHYSICS, 2024, 686