Vision-based displacement measurement enhanced by super-resolution using generative adversarial networks

被引:27
|
作者
Sun, Chujin [1 ]
Gu, Donglian [2 ]
Zhang, Yi [1 ]
Lu, Xinzheng [1 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, China Educ Minist, Key Lab Civil Engn Safety & Durabil, Beijing 100084, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Res Inst Urbanizat & Urban Safety, Beijing, Peoples R China
来源
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
computer vision; displacement measurement; generative adversarial networks; super-resolution; surveillance video cameras; DIGITAL IMAGE CORRELATION; COMPUTER VISION; DYNAMIC DISPLACEMENT; CIVIL INFRASTRUCTURE; DAMAGE DETECTION; OPTICAL-FLOW; FEATURES; RESOLUTION; SYSTEM;
D O I
10.1002/stc.3048
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Monitoring the deformation or displacement response of buildings is critical for structural safety. Recently, the development of computer vision has led to extensive research on the application of vision-based measurements in the structural monitoring. This enables the use of urban surveillance video cameras, which are widely installed and can produce numerous images and videos of urban scenes to measure the structural displacement. However, the structural displacement measurement may be inaccurate owing to the limited hardware resolution of the surveillance video cameras or the long distance from the cameras to the monitored targets. To this end, this study proposes a method to improve the displacement measurement accuracy using a deep learning super-resolution model based on generative adversarial networks. The proposed method achieves texture detail enhancement of low-resolution images or videos by supplementing high-resolution photographs of the target, thus improving the accuracy of the vision-based displacement measurement. The proposed method shows good accuracy and stability in both the static and dynamic experimental validations compared with the original low-resolution images/video and interpolation-based super-resolution images/video. In conclusion, the proposed method can support the displacement measurement of buildings and infrastructures based on urban surveillance video cameras.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Super-Resolution of Sentinel-2 Imagery Using Generative Adversarial Networks
    Salgueiro Romero, Luis
    Marcello, Javier
    Vilaplana, Veronica
    REMOTE SENSING, 2020, 12 (15)
  • [32] IMAGE SUPER-RESOLUTION USING COMPLEX DENSE BLOCK ON GENERATIVE ADVERSARIAL NETWORKS
    Chen, Bo-Xun
    Liu, Tsung-Jung
    Liu, Kuan-Hsien
    Liu, Hsin-Hua
    Pei, Soo-Chang
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2866 - 2870
  • [33] Image Super-Resolution Reconstruction Method Using Dual Discriminator Based on Generative Adversarial Networks
    Yuan Piaoyi
    Zhang Yaping
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (23)
  • [34] SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks
    Zhang, Kuan
    Hu, Haoji
    Philbrick, Kenneth
    Conte, Gian Marco
    Sobek, Joseph D.
    Rouzrokh, Pouria
    Erickson, Bradley J.
    TOMOGRAPHY, 2022, 8 (02) : 905 - 919
  • [35] Image Super-Resolution using Generative Adversarial Networks with EfficientNetV2
    AlTakrouri, Saleh
    Noor, Norliza Mohd
    Ahmad, Norulhusna
    Justinia, Taghreed
    Usman, Sahnius
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 879 - 887
  • [36] Multispectral image fusion using super-resolution conditional generative adversarial networks
    Zhang, Junhao
    Shamsolmoali, Pourya
    Zhang, Pengpeng
    Feng, Deying
    Yang, Jie
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 13 (02)
  • [37] Multiframe infrared image super-resolution reconstruction using generative adversarial networks
    Li F.
    He X.
    Wei Z.
    He J.
    He D.
    2018, Chinese Society of Astronautics (47):
  • [38] Phase-aware music super-resolution using generative adversarial networks
    Hu, Shichao
    Zhang, Bin
    Liang, Beici
    Zhao, Ethan
    Lui, Simon
    INTERSPEECH 2020, 2020, : 4074 - 4078
  • [39] Super-Resolution of Solar Active Region Patches Using Generative Adversarial Networks
    Alshehhi, Rasha
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 451 - 462
  • [40] Super-Resolution and Inpainting with Degraded and Upgraded Generative Adversarial Networks
    Huang, Yawen
    Zheng, Feng
    Wang, Danyang
    Jiang, Junyu
    Wang, Xiaoqian
    Shao, Ling
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 645 - 651