A posteriori error estimates for optimal control problems governed by parabolic equations

被引:135
|
作者
Liu, WB [1 ]
Yan, NN
机构
[1] Univ Kent, CBS, Canterbury CT2 7PE, Kent, England
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing, Peoples R China
关键词
D O I
10.1007/s002110100380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a posteriori error estimates for the finite element approximation of quadratic optimal control problem governed by linear parabolic equation. We obtain a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive finite element approximation schemes for the control problem.
引用
收藏
页码:497 / 521
页数:25
相关论文
共 50 条
  • [31] RETRACTED: A priori error estimates of mixed methods for optimal control problems governed by parabolic equations (Retracted Article)
    Lu, Zuliang
    Huang, Xiao
    [J]. 2011 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENTAL SCIENCE-ICEES 2011, 2011, 11 : 1621 - 1625
  • [32] Error Estimates of Semidiscrete Mixed Methods for Optimal Control Problems Governed by Parabolic Integro-differential Equations
    Hou T.
    [J]. Vietnam Journal of Mathematics, 2013, 41 (2) : 149 - 160
  • [33] A posteriori error estimates for control problems governed by nonlinear elliptic equations in hp-FEM
    Chen, Yanping
    Lin, Yijie
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 163 - 176
  • [34] Functional A Posteriori Error Estimates for Time-Periodic Parabolic Optimal Control Problems
    Langer, Ulrich
    Repin, Sergey
    Wolfmayr, Monika
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (10) : 1267 - 1294
  • [35] A posteriori error estimates of hp spectral element method for parabolic optimal control problems
    Lu, Zuliang
    Cai, Fei
    Xu, Ruixiang
    Hou, Chunjuan
    Wu, Xiankui
    Yang, Yin
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5220 - 5240
  • [36] A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal control problems
    Fu, Hongfei
    Rui, Hongxing
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) : 2798 - 2823
  • [37] Superconvergence and a posteriori error estimates for boundary control governed by Stokes equations
    Liu, Hui-po
    Yan, Ning-ning
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 343 - 356
  • [38] A posteriori error estimates of mixed finite element methods for general optimal control problems governed by integro-differential equations
    Zuliang Lu
    Dayong Liu
    [J]. Journal of Inequalities and Applications, 2013
  • [39] A posteriori error estimates of mixed finite element methods for general optimal control problems governed by integro-differential equations
    Lu, Zuliang
    Liu, Dayong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [40] A posteriori error estimates for the fractional optimal control problems
    Ye, Xingyang
    Xu, Chuanju
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13