Using R Package RAMpath for Tracing SEM Path Diagrams and Conducting Complex Longitudinal Data Analysis

被引:13
|
作者
Zhang, Zhiyong [1 ]
Hamagami, Fumiaki [2 ]
Grimm, Kevin J. [3 ]
McArdle, John J. [4 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46545 USA
[2] Univ Hawaii Manoa, Honolulu, HI 96822 USA
[3] Univ Calif Davis, Davis, CA 95616 USA
[4] Univ So Calif, Los Angeles, CA 90089 USA
关键词
tracing path diagram; score models; longitudinal data analysis; latent change; RAMpath; R package; TRIAL;
D O I
10.1080/10705511.2014.935257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce and demonstrate the application of a newly developed R package RAMpath for tracing path diagrams and conducting structural longitudinal data analysis. RAMpath was developed to preserve the essential features of the classic DOS version of the RAMpath program (McArdle & Boker, 1990) and ease data analysis done through structural equation modeling (SEM). The applicability of RAMpath is demonstrated through a mediation model, a MIMIC model, several latent growth curve models, a univariate latent change score model, and a bivariate latent change score model. In addition to performing regular SEM analysis, RAMpath has unique features. First, it can generate path diagrams according to a given model. Second, it can display path tracing rules through path diagrams and decompose total effects into their respective direct and indirect effects as well as decompose variances and covariances into individual bridges. Furthermore, RAMpath can fit dynamic system models automatically based on latent change scores and generate vector field plots based on results obtained from a bivariate dynamic system. RAMpath is provided as an open-source R package.
引用
收藏
页码:132 / 147
页数:16
相关论文
共 50 条
  • [21] simplexreg: An R Package for Regression Analysis of Proportional Data Using the Simplex Distribution
    Zhang, Peng
    Qiu, Zhenguo
    Shi, Chengchun
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 71 (11): : 1 - 21
  • [22] BNPA: An R package to learn path analysis input models from a data set semi-automatically using Bayesian networks®
    de Carvalho, Elias Cesar Araujo
    Vissoci, Joao Ricardo Nickenig
    de Andrade, Luciano
    Machado, Wagner de Lara
    Paraiso, Emerson Cabrera
    Nievola, Julio Cesar
    KNOWLEDGE-BASED SYSTEMS, 2021, 223
  • [23] The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC
    Rizopoulos, Dimitris
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 72 (07): : 1 - 46
  • [24] mgee2: An R package for marginal analysis of longitudinal ordinal data with misclassified responses and covariates
    Xu, Yuliang
    Liu, Shuo Shuo
    Yi, Grace Y.
    R JOURNAL, 2021, 13 (02): : 471 - 484
  • [25] drda: An R Package for Dose-Response Data Analysis Using Logistic Functions
    Malyutina, Alina
    Tang, Jing
    Pessia, Alberto
    JOURNAL OF STATISTICAL SOFTWARE, 2023, 106 (04): : 1 - 26
  • [26] Data processing in luminescence dating analysis: An exemplary workflow using the R package 'Luminescence'
    Fuchs, Margret C.
    Kreutzer, Sebastian
    Burow, Christoph
    Dietze, Michael
    Fischer, Manfred
    Schmidt, Christoph
    Fuchs, Markus
    QUATERNARY INTERNATIONAL, 2015, 362 : 8 - 13
  • [27] Phenology of wood formation: Data processing, analysis and visualisation using R (package CAVIAR)
    Rathgeber, Cyrille B. K.
    Longuetaud, Fleur
    Mothe, Frederic
    Cuny, Henri
    Le Moguedec, Gilles
    DENDROCHRONOLOGIA, 2011, 29 (03) : 139 - 149
  • [28] Spatial analysis of groundwater quality data using geoR and mgcv R-package
    Irawan, D. E.
    Akter, F.
    Vervoort, W.
    Prabowo, K.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS 2014), 2015, 1677
  • [29] Inferring signalling networks from longitudinal data using sampling based approaches in the R-package 'ddepn'
    Christian Bender
    Silvia vd Heyde
    Frauke Henjes
    Stefan Wiemann
    Ulrike Korf
    Tim Beißbarth
    BMC Bioinformatics, 12
  • [30] Inferring signalling networks from longitudinal data using sampling based approaches in the R-package 'ddepn'
    Bender, Christian
    vd Heyde, Silvia
    Henjes, Frauke
    Wiemann, Stefan
    Korf, Ulrike
    Beissbarth, Tim
    BMC BIOINFORMATICS, 2011, 12