simplexreg: An R Package for Regression Analysis of Proportional Data Using the Simplex Distribution

被引:29
|
作者
Zhang, Peng [1 ]
Qiu, Zhenguo [2 ]
Shi, Chengchun [3 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Alberta Hlth Serv, Surveillance, CancerControl, Edmonton, AB T5J 3H1, Canada
[3] North Carolina State Univ, Dept Stat, Raleigh, NC 27606 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2016年 / 71卷 / 11期
关键词
dispersion models; proportional data; random variable generation; R; simplex distribution; GENERALIZED LINEAR-MODELS; VIABLE CD34(+) CELLS; MARGINAL MODELS; BETA REGRESSION; ENGRAFTMENT; DISPERSION; RESPONSES;
D O I
10.18637/jss.v071.i11
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Outcomes of continuous proportions arise in many applied areas. Such data are typically measured as percentages, rates or proportions confined in the unitary interval. In this paper, the R package simplexreg which provides dispersion model fitting of the simplex distribution is introduced to model such proportional outcomes. The maximum likelihood method and generalized estimating equations techniques are available for parameter estimation in cross-sectional and longitudinal studies, respectively. This paper presents methods and algorithms implemented in the package, including parameter estimation, model checking as well as density, cumulative distribution, quantile and random number generating functions of the simplex distribution. The package is applied to real data sets for illustration.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Repeated measures proportional odds logistic regression analysis of ordinal score data in the statistical software package R
    Parsons, Nick R.
    Costa, Matthew L.
    Achten, Juul
    Stallard, Nigel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (03) : 632 - 641
  • [2] R-environment package for regression analysis
    Arnhold, Emmanuel
    PESQUISA AGROPECUARIA BRASILEIRA, 2018, 53 (07) : 870 - 873
  • [3] REGRESSION-ANALYSIS OF PROPORTIONAL CELL DATA
    GOCKA, EF
    PSYCHOLOGICAL BULLETIN, 1973, 80 (01) : 25 - 27
  • [4] TURF analysis for CATA data using R package ?turfR ?
    Kuesten, Carla
    Bi, Jian
    FOOD QUALITY AND PREFERENCE, 2021, 91
  • [5] Exploratory Analysis of Provenance Data Using R and the Provenance Package
    Vermeesch, Pieter
    MINERALS, 2019, 9 (03)
  • [6] OutlierD: an R package for outlier detection using quantile regression on mass spectrometry data
    Cho, HyungJun
    Kim, Yang-Jin
    Jung, Hee Jung
    Lee, Sang-Won
    Lee, Jae Won
    BIOINFORMATICS, 2008, 24 (06) : 882 - 884
  • [7] overdisp: an R package for direct detection of overdispersion in count data multiple regression analysis
    de Freitas Souza R.
    Fávero L.P.
    Belfiore P.
    Corrêa H.L.
    International Journal of Business Intelligence and Data Mining, 2022, 20 (03) : 327 - 344
  • [8] Penalized functional regression using R package PFLR
    Cameron, Rob
    Guan, Tianyu
    Shi, Haolun
    Lin, Zhenhua
    JOURNAL OF APPLIED STATISTICS, 2025,
  • [9] Weighted Cox Regression Using the R Package coxphw
    Dunkler, Daniela
    Ploner, Meinhard
    Schemper, Michael
    Heinze, Georg
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 84 (02): : 1 - 26
  • [10] scatterbar: an R package for visualizing proportional data across spatially resolved coordinates
    Velazquez, Dee
    Fan, Jean
    BIOINFORMATICS, 2025, 41 (02)