simplexreg: An R Package for Regression Analysis of Proportional Data Using the Simplex Distribution

被引:29
|
作者
Zhang, Peng [1 ]
Qiu, Zhenguo [2 ]
Shi, Chengchun [3 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Alberta Hlth Serv, Surveillance, CancerControl, Edmonton, AB T5J 3H1, Canada
[3] North Carolina State Univ, Dept Stat, Raleigh, NC 27606 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2016年 / 71卷 / 11期
关键词
dispersion models; proportional data; random variable generation; R; simplex distribution; GENERALIZED LINEAR-MODELS; VIABLE CD34(+) CELLS; MARGINAL MODELS; BETA REGRESSION; ENGRAFTMENT; DISPERSION; RESPONSES;
D O I
10.18637/jss.v071.i11
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Outcomes of continuous proportions arise in many applied areas. Such data are typically measured as percentages, rates or proportions confined in the unitary interval. In this paper, the R package simplexreg which provides dispersion model fitting of the simplex distribution is introduced to model such proportional outcomes. The maximum likelihood method and generalized estimating equations techniques are available for parameter estimation in cross-sectional and longitudinal studies, respectively. This paper presents methods and algorithms implemented in the package, including parameter estimation, model checking as well as density, cumulative distribution, quantile and random number generating functions of the simplex distribution. The package is applied to real data sets for illustration.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] EMA - A R package for Easy Microarray data analysis
    Servant N.
    Gravier E.
    Gestraud P.
    Laurent C.
    Paccard C.
    Biton A.
    Brito I.
    Mandel J.
    Asselain B.
    Barillot E.
    Hupé P.
    BMC Research Notes, 3 (1)
  • [42] BayesTwin: an R package for Bayesian analysis of twin data
    Schwabe, Inga
    van den Berg, Stephanie
    BEHAVIOR GENETICS, 2017, 47 (06) : 654 - 655
  • [43] MGLM: An R Package for Multivariate Categorical Data Analysis
    Kim, Juhyun
    Zhang, Yiwen
    Day, Joshua
    Zhou, Hua
    R JOURNAL, 2018, 10 (01): : 73 - 90
  • [44] Spathial: an R package for the evolutionary analysis of biological data
    Gardini, Erika
    Giorgi, Federico M.
    Decherchi, Sergio
    Cavalli, Andrea
    BIOINFORMATICS, 2020, 36 (17) : 4664 - 4667
  • [45] An R package for the integrated analysis of metabolomics and spectral data
    Costa, Christopher
    Maraschin, Marcelo
    Rocha, Miguel
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 129 : 117 - 124
  • [46] AMDA: an R package for the automated microarray data analysis
    Mattia Pelizzola
    Norman Pavelka
    Maria Foti
    Paola Ricciardi-Castagnoli
    BMC Bioinformatics, 7
  • [47] SRMA: an R package for resequencing array data analysis
    Zhang, Nianxiang
    Xu, Yan
    O'Hely, Martin
    Speed, Terence P.
    Scharfe, Curt
    Wang, Wenyi
    BIOINFORMATICS, 2012, 28 (14) : 1928 - 1930
  • [48] renz: An R package for the analysis of enzyme kinetic data
    Aledo, Juan Carlos
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [49] cold: An R Package for the Analysis of Count Longitudinal Data
    Goncalves, M. Helena
    Cabral, M. Salome
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (03): : 1 - 34
  • [50] AMDA: an R package for the automated microarray data analysis
    Pelizzola, Mattia
    Pavelka, Norman
    Foti, Maria
    Ricciardi-Castagnoli, Paola
    BMC BIOINFORMATICS, 2006, 7 (1)