On Lang's conjecture for surfaces of general type

被引:0
|
作者
Kang, CX [1 ]
机构
[1] Univ Texas, Odessa, Ukraine
关键词
rational curves; general type varieties; BMY inequality;
D O I
10.1081/AGB-120017351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m be a nonnegative integer. We explicitly bound the number of rational curves with arithmetic genus no greater than m on a surface of general type by geometric invariants of the surface. We also briefly discuss the possibility of bounding all rational curves. lying on, a surface of general type in IP3.
引用
收藏
页码:945 / 957
页数:13
相关论文
共 50 条
  • [31] On Pillay's conjecture in the general case
    Edmundo, Mario J.
    Mamino, Marcello
    Prelli, Luca
    Ramakrishnan, Janak
    Terzo, Giuseppina
    ADVANCES IN MATHEMATICS, 2017, 310 : 940 - 992
  • [32] Burnett's conjecture in general relativity
    Touati, Arthur
    COMPTES RENDUS MECANIQUE, 2025, 353
  • [33] Green's conjecture for general covers
    Aprodu, Marian
    Farkas, Gavril
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 211 - +
  • [34] FIBERED THREEFOLDS AND LANG-VOJTA'S CONJECTURE OVER FUNCTION FIELDS
    Turchet, Amos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) : 8537 - 8558
  • [35] On the quantitative dynamical Mordell-Lang conjecture
    Ostafe, Alina
    Sha, Min
    JOURNAL OF NUMBER THEORY, 2015, 156 : 161 - 182
  • [36] The Mordell-Lang conjecture for function fields
    Hrushovski, E
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) : 667 - 690
  • [37] ARITHMETIC QUOTIENTS OF THE COMPLEX BALL AND A CONJECTURE OF LANG
    Dimitrov, Mladen
    Ramakrishnan, Dinakar
    DOCUMENTA MATHEMATICA, 2015, 20 : 1185 - 1205
  • [38] On the Lang–Trotter conjecture for two elliptic curves
    Amir Akbary
    James Parks
    The Ramanujan Journal, 2019, 49 : 585 - 623
  • [39] A Refined Version of the Lang-Trotter Conjecture
    Baier, Stephan
    Jones, Nathan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (03) : 433 - 461
  • [40] Two examples related on a conjecture of Serge Lang
    Cantat, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07): : 581 - 586