rational curves;
general type varieties;
BMY inequality;
D O I:
10.1081/AGB-120017351
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let m be a nonnegative integer. We explicitly bound the number of rational curves with arithmetic genus no greater than m on a surface of general type by geometric invariants of the surface. We also briefly discuss the possibility of bounding all rational curves. lying on, a surface of general type in IP3.
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Ghioca, Dragos
Hu, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Pacific Inst Math Sci, 2207 Main Mall, Vancouver, BC V6T 1Z4, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Hu, Fei
Scanlon, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Math Dept, Evans Hall, Berkeley, CA 94720 USAUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Scanlon, Thomas
Zannier, Umberto
论文数: 0引用数: 0
h-index: 0
机构:
Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, ItalyUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada