Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems

被引:60
|
作者
Mellit, Adel [1 ,2 ]
Kalogirou, Soteris [3 ,4 ]
机构
[1] Univ Jijel, Renewable Energy Lab, Jijel, Algeria
[2] AS Int Ctr Theoret Phys, Trieste, Italy
[3] Cyprus Univ Technol, Dept Mech Engn & Mat Sci & Engn, Limassol, Cyprus
[4] Cyprus Acad Sci Letters & Arts, Nicosia, Cyprus
关键词
Photovoltaic system; Fault detection; Fault classi fication; Machine learning; Ensemble learning; CLASSIFICATION; NETWORK;
D O I
10.1016/j.renene.2021.11.125
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The photovoltaic (PV) array is the most sensible element in PV plants, which is subject to different type of faults and defects. Thus, to keep these plants working efficiently they should be monitored and protected carefully. Some faults if they are not detected and isolated promptly they may lead to hazardous risks. The diagnosis of PV systems is widely addressed and recently machine learning (ML) and deep leaning (DL) methods drawn the attention of many researchers. Most applications of ML methods are based on the use of the I-V curves measurement, as enough information and features can be extracted from the curves, to detect and classify faults. These methods showed their capability to classify some faults, like line to line, degradation, disconnected PV modules, partial shading effect, and bypass diode faults. Another approach is based on the use of thermal or electroluminescence images of PV modules/arrays to detect and identify defects, such as hot spot, snails crack, and others. In this paper, different ML and ensemble learning (EL) methods are evaluated for fault diagnosis of PV arrays. The focus is mainly on the detection and classification of some complex faults that may affect the PV arrays, i.e., multiple faults, and faults with similar I-V curves, that are not evaluated before. The results showed the ability of the methods developed to detect faults with very good accuracy (classification rate = number of classified instances/total instances), within 99%, while the classification faults is done with an acceptable accuracy, within 81.73%. Through this study it is shown when really ML and EL methods should be used, and some recommendations, challenges and future directions in this topic are presented.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1074 / 1090
页数:17
相关论文
共 50 条
  • [21] A weighted ensemble learning-based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm
    Eskandari, Aref
    Aghaei, Mohammadreza
    Milimonfared, Jafar
    Nedaei, Amir
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 144
  • [22] Fault diagnosis of photovoltaic system based on machine learning model fusion
    Guo, Xingke
    Na, Zhixiong
    Ma, Dayan
    Lu, Yudong
    Luo, Xin
    FOURTH INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION, 2020, 467
  • [23] Ensemble methods in machine learning
    Dietterich, TG
    MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 : 1 - 15
  • [24] Adaptive Boosting and Bootstrapped Aggregation based Ensemble Machine Learning Methods for Photovoltaic Systems Output Current Prediction
    Omer, Zahi M.
    Shareef, Hussain
    2019 29TH AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2019,
  • [25] Fault diagnosis of ball bearings using machine learning methods
    Kankar, P. K.
    Sharma, Satish C.
    Harsha, S. P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 1876 - 1886
  • [26] Research on Motor Fault Diagnosis Methods Based on Machine Learning
    Wang, Zhiqiang
    Bian, Wenkui
    Li, Tianqing
    Zhang, Xintong
    He, Dakuo
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 1879 - 1884
  • [27] Fault Diagnosis of Batch Reactor Using Machine Learning Methods
    Subramanian, Sujatha
    Ghouse, Fathima
    Natarajan, Pappa
    MODELLING AND SIMULATION IN ENGINEERING, 2014, 2014 (2014)
  • [28] Fault Diagnosis of Asymmetric Cascaded Multilevel Inverter using Ensemble Machine Learning
    Rangasamy, Kavitha
    INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERIALS, 2024, 54 (01):
  • [29] Statistical Analysis and Development of an Ensemble-Based Machine Learning Model for Photovoltaic Fault Detection
    Hussain, Muhammad
    Al-Aqrabi, Hussain
    Hill, Richard
    ENERGIES, 2022, 15 (15)
  • [30] Ensemble Machine Learning Methods for better Dynamic Assessment of Transformer Status
    Ghosh, Soham
    Dutta, Sreejata
    Journal of The Institution of Engineers (India): Series B, 2021, 102 (05) : 1113 - 1122