Parameter estimation;
Bootstrapping;
Asymptotic standard errors;
LEAST-SQUARES;
WEIGHTS;
D O I:
10.1016/j.mcm.2010.06.026
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error, which produce non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods. (C) 2010 Elsevier Ltd. All rights reserved.
机构:
Pacific NW Natl Lab, Adv Comp Math & Data Div, 902 Battelle Blvd, Richland, WA 99352 USAPacific NW Natl Lab, Adv Comp Math & Data Div, 902 Battelle Blvd, Richland, WA 99352 USA
Li, Weixuan
Lin, Guang
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USAPacific NW Natl Lab, Adv Comp Math & Data Div, 902 Battelle Blvd, Richland, WA 99352 USA
Lin, Guang
Li, Bing
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, 410 Thomas Bldg, University Pk, PA 16802 USAPacific NW Natl Lab, Adv Comp Math & Data Div, 902 Battelle Blvd, Richland, WA 99352 USA