Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping

被引:26
|
作者
Banks, H. T. [1 ]
Holm, Kathleen
Robbins, Danielle
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
Parameter estimation; Bootstrapping; Asymptotic standard errors; LEAST-SQUARES; WEIGHTS;
D O I
10.1016/j.mcm.2010.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error, which produce non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods. (C) 2010 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1610 / 1625
页数:16
相关论文
共 50 条
  • [41] Non-linear model reduction for uncertainty quantification in large-scale inverse problems
    Galbally, D.
    Fidkowski, K.
    Willcox, K.
    Ghattas, O.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (12) : 1581 - 1608
  • [42] Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions
    Davis, Gary A.
    Cheong, Christopher
    TRANSPORTATION RESEARCH RECORD, 2019, 2673 (11) : 583 - 592
  • [43] STO vs. ICO: A Theory of Token Issues under Moral Hazard and Demand Uncertainty
    Miglo, Anton
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (06)
  • [44] Experienced vs. Described Uncertainty: Do We Need Two Prospect Theory Specifications?
    Abdellaoui, Mohammed
    L'Haridon, Olivier
    Paraschiv, Corina
    MANAGEMENT SCIENCE, 2011, 57 (10) : 1879 - 1895
  • [45] CUQIpy: II. Computational uncertainty quantification for PDE-based inverse problems in Python']Python
    Alghamdi, Amal M. A.
    Riis, Nicolai A. B.
    Afkham, Babak M.
    Uribe, Felipe
    Christensen, Silja L.
    Hansen, Per Christian
    Jorgensen, Jakob S.
    INVERSE PROBLEMS, 2024, 40 (04)
  • [46] Randomized physics-informed machine learning for uncertainty quantification in high-dimensional inverse problems
    Zong, Yifei
    Barajas-Solano, David
    Tartakovsky, Alexandre M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [47] Uncertainty quantification for goal-oriented inverse problems via variational encoder-decoder networks
    Afkham, Babak Maboudi
    Chung, Julianne
    Chung, Matthias
    INVERSE PROBLEMS, 2024, 40 (07)
  • [48] Geometric complexity theory I:: An approach to the P vs. NP and related problems
    Mulmuley, KD
    Sohoni, M
    SIAM JOURNAL ON COMPUTING, 2001, 31 (02) : 496 - 526
  • [49] Unsupervised extraction and quantification of the bronchial tree on ultra-low-dose vs. standard dose CT
    Wiemker, Rafael
    Ekin, Ahmet
    Opfer, Roland
    Buelow, Thomas
    Rogalla, Patrik
    MEDICAL IMAGING 2006: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES PTS 1 AND 2, 2006, 6143
  • [50] Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice
    Li, Weixuan
    Lin, Guang
    Li, Bing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 259 - 278