Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping

被引:26
|
作者
Banks, H. T. [1 ]
Holm, Kathleen
Robbins, Danielle
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
Parameter estimation; Bootstrapping; Asymptotic standard errors; LEAST-SQUARES; WEIGHTS;
D O I
10.1016/j.mcm.2010.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error, which produce non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods. (C) 2010 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1610 / 1625
页数:16
相关论文
共 50 条
  • [11] Uncertainty Quantification in Inverse Scattering Problems With Bayesian Convolutional Neural Networks
    Wei, Zhun
    Chen, Xudong
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (06) : 3409 - 3418
  • [12] Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes
    Malinverno, A
    Briggs, VA
    GEOPHYSICS, 2004, 69 (04) : 1005 - 1016
  • [13] Uncertainty quantification in Bayesian inverse problems with model and data dimension reduction
    Grana, Dario
    de Figueiredo, Leandro Passos
    Azevedo, Leonardo
    GEOPHYSICS, 2019, 84 (06) : M15 - M24
  • [14] Natural vs. artificial groundwater recharge, quantification through inverse modeling
    Hashemi, H.
    Berndtsson, R.
    Kompani-Zare, M.
    Persson, M.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (02) : 637 - 650
  • [15] Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems
    Tapio Helin
    Remo Kretschmann
    Numerische Mathematik, 2022, 150 : 521 - 549
  • [16] Non-asymptotic error estimates for the Laplace approximation in Bayesian inverse problems
    Helin, Tapio
    Kretschmann, Remo
    NUMERISCHE MATHEMATIK, 2022, 150 (02) : 521 - 549
  • [17] Ensembles vs. information theory: supporting science under uncertainty
    Grey S. Nearing
    Hoshin V. Gupta
    Frontiers of Earth Science, 2018, 12 : 653 - 660
  • [18] Ensembles vs. information theory: supporting science under uncertainty
    Nearing, Grey S.
    Gupta, Hoshin V.
    FRONTIERS OF EARTH SCIENCE, 2018, 12 (04) : 653 - 660
  • [19] CUQIpy: I. Computational uncertainty quantification for inverse problems in Python']Python
    Riis, Nicolai A. B.
    Alghamdi, Amal M. A.
    Uribe, Felipe
    Christensen, Silja L.
    Afkham, Babak M.
    Hansen, Per Christian
    Jorgensen, Jakob S.
    INVERSE PROBLEMS, 2024, 40 (04)
  • [20] Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution
    Wu, Tailin
    Neiswanger, Willie
    Zheng, Hongtao
    Ermon, Stefano
    Leskovec, Jure
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 320 - 328