Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping

被引:26
|
作者
Banks, H. T. [1 ]
Holm, Kathleen
Robbins, Danielle
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
Parameter estimation; Bootstrapping; Asymptotic standard errors; LEAST-SQUARES; WEIGHTS;
D O I
10.1016/j.mcm.2010.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error, which produce non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods. (C) 2010 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1610 / 1625
页数:16
相关论文
共 50 条
  • [1] Guard Digits vs. Roundoff Error vs. Overall Uncertainty
    Denker, John
    Smith, Larry
    PHYSICS TEACHER, 2018, 56 (08): : 532 - 534
  • [2] Data analysis tools for uncertainty quantification of inverse problems
    Tenorio, L.
    Andersson, F.
    de Hoop, M.
    Ma, P.
    INVERSE PROBLEMS, 2011, 27 (04)
  • [3] Total error vs. measurement uncertainty: the match continues
    Panteghini, Mauro
    Sandberg, Sverre
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2016, 54 (02) : 195 - 196
  • [4] Total error vs. measurement uncertainty: revolution or evolution?
    Oosterhuis, Wytze P.
    Theodorsson, Elvar
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2016, 54 (02) : 235 - 239
  • [5] THE STANDARD ERROR OF A WEIGHTED MEAN CONCENTRATION .1. BOOTSTRAPPING VS OTHER METHODS
    GATZ, DF
    SMITH, L
    ATMOSPHERIC ENVIRONMENT, 1995, 29 (11) : 1185 - 1193
  • [6] Accurate Solution of Bayesian Inverse Uncertainty Quantification Problems Combining Reduced Basis Methods and Reduction Error Models
    Manzoni, A.
    Pagani, S.
    Lassila, T.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 380 - 412
  • [7] An MCMC method for uncertainty quantification in nonnegativity constrained inverse problems
    Bardsley, Johnathan M.
    Fox, Colin
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2012, 20 (04) : 477 - 498
  • [8] A unified framework for multilevel uncertainty quantification in Bayesian inverse problems
    Nagel, Joseph B.
    Sudret, Bruno
    PROBABILISTIC ENGINEERING MECHANICS, 2016, 43 : 68 - 84
  • [9] Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations
    Huan, Xun
    Safta, Cosmin
    Sargsyan, Khachik
    Geraci, Gianluca
    Eldred, Michael S.
    Vane, Zachary P.
    Lacaze, Guilhem
    Oefelein, Joseph C.
    Najm, Habib N.
    AIAA JOURNAL, 2018, 56 (03) : 1170 - 1184
  • [10] Insight vs. trial-and-error in the solution of problems
    Hartmann, GW
    AMERICAN JOURNAL OF PSYCHOLOGY, 1933, 45 : 663 - 677