Doubly robust semiparametric inference using regularized calibrated estimation with high-dimensional data

被引:8
|
作者
Ghosh, Sat Yajit [1 ]
Tan, Zhiqiang [1 ]
机构
[1] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
关键词
Average treatment effect; calibration estimation; debiased Lasso; double robustness; high-dimensional data; Lasso penalty; partially linear model; semiparametric estimation; CONFIDENCE-REGIONS; MODEL; REGRESSION; INTERVALS; SELECTION; TESTS;
D O I
10.3150/21-BEJ1378
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider semiparametric estimation where a doubly robust estimating function for a low-dimensional parameter is available, depending on two working models. With high-dimensional data, we develop regularized calibrated estimation as a general method for estimating the parameters in the two working models, such that valid Wald confidence intervals can be obtained for the parameter of interest under suitable sparsity conditions if either of the two working models is correctly specified. We propose a computationally tractable two-step algorithm and provide rigorous theoretical analysis which justifies sufficiently fast rates of convergence for the regularized calibrated estimators in spite of sequential construction and establishes a desired asymptotic expansion for the doubly robust estimator. As concrete examples, we discuss applications to partially linear, log-linear, and logistic models and estimation of average treatment effects. Numerical studies in the former three examples demonstrate superior performance of our method, compared with debiased Lasso.
引用
收藏
页码:1675 / 1703
页数:29
相关论文
共 50 条
  • [21] ASYMPTOTIC INFERENCE FOR HIGH-DIMENSIONAL DATA
    Kuelbs, Jim
    Vidyashankar, Anand N.
    [J]. ANNALS OF STATISTICS, 2010, 38 (02): : 836 - 869
  • [22] Doubly robust evaluation of high-dimensional surrogate markers
    Agniel, Denis
    Hejblum, Boris P.
    Thiebaut, Rodolphe
    Parast, Layla
    [J]. BIOSTATISTICS, 2023, 24 (04) : 985 - 999
  • [23] Doubly-robust Q-estimation in observational studies with high-dimensional covariates
    Lee, Hyobeen
    Kim, Yeji
    Cho, Hyungjun
    Choi, Sangbum
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (03) : 309 - 327
  • [24] High-dimensional IV cointegration estimation and inference☆
    Phillips, Peter C. B.
    Kheifets, Igor L.
    [J]. JOURNAL OF ECONOMETRICS, 2024, 238 (02)
  • [25] Supervised clustering of high-dimensional data using regularized mixture modeling
    Chang, Wennan
    Wan, Changlin
    Zang, Yong
    Zhang, Chi
    Cao, Sha
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [26] Semiparametric Bayesian doubly robust causal estimation
    Luo, Yu
    Graham, Daniel J.
    McCoy, Emma J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 225 : 171 - 187
  • [27] Ultra high-dimensional semiparametric longitudinal data analysis
    Green, Brittany
    Lian, Heng
    Yu, Yan
    Zu, Tianhai
    [J]. BIOMETRICS, 2021, 77 (03) : 903 - 913
  • [28] High-dimensional generalized semiparametric model for longitudinal data
    Taavoni, M.
    Arashi, M.
    [J]. STATISTICS, 2021, 55 (04) : 831 - 850
  • [29] Doubly robust estimation and causal inference for recurrent event data
    Su, Chien-Lin
    Steele, Russell
    Shrier, Ian
    [J]. STATISTICS IN MEDICINE, 2020, 39 (17) : 2324 - 2338
  • [30] Doubly robust estimation in missing data and causal inference models
    Bang, H
    [J]. BIOMETRICS, 2005, 61 (04) : 962 - 972