Non-polynomial spline method for the time-fractional nonlinear Schrodinger equation

被引:21
|
作者
Li, Mingzhu [1 ,2 ]
Ding, Xiaohua [1 ]
Xu, Qiang [3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin, Heilongjiang, Peoples R China
[2] Qingdao Univ Qingdao, Sch Sci, Qingdao, Peoples R China
[3] Shandong Normal Univ, Sch Math & Stat, Jinan, Shandong, Peoples R China
关键词
Fractional Schrodinger equation; Non-polynomial spline; Stability; Fourier analysis; SPECTRAL COLLOCATION APPROXIMATION; SUB-DIFFUSION EQUATIONS; SYSTEM;
D O I
10.1186/s13662-018-1743-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a cubic non-polynomial spline method to solve the time-fractional nonlinear Schrodinger equation. The method is based on applying the L-1 formula to approximate the Caputo fractional derivative and employing the cubic non-polynomial spline functions to approximate the spatial derivative. By considering suitable relevant parameters, the scheme of order O(tau(2-alpha) + h(4)) has been obtained. The unconditional stability of the method is analyzed by the Fourier analysis. Numerical experiments are given to illustrate the effectiveness and accuracy of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [42] On Time-Fractional Cylindrical Nonlinear Equation
    H.G.Abdelwahed
    E.K.ElShewy
    A.A.Mahmoud
    Chinese Physics Letters, 2016, (11) : 66 - 70
  • [43] On Time-Fractional Cylindrical Nonlinear Equation
    Abdelwahed, H. G.
    ElShewy, E. K.
    Mahmoud, A. A.
    CHINESE PHYSICS LETTERS, 2016, 33 (11)
  • [44] Non-polynomial Spline Method for Solving Coupled Burgers' Equations
    Ali, Khalid K.
    Raslan, K. R.
    El-Danaf, Talaat S.
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2015, 3 (03): : 218 - 230
  • [45] On the spline collocation method for the single layer equation related to time-fractional diffusion
    Kemppainen, Jukka T.
    Ruotsalainen, Keijo Matti
    NUMERICAL ALGORITHMS, 2011, 57 (03) : 313 - 327
  • [46] On the spline collocation method for the single layer equation related to time-fractional diffusion
    Jukka T. Kemppainen
    Keijo Matti Ruotsalainen
    Numerical Algorithms, 2011, 57 : 313 - 327
  • [47] On Implementation of Non-Polynomial Spline Approximation
    O. V. Belyakova
    Computational Mathematics and Mathematical Physics, 2019, 59 : 689 - 695
  • [48] Non-polynomial spline method for solving Bratu's problem
    Jalilian, R.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (11) : 1868 - 1872
  • [49] Embedding of non-polynomial spline spaces
    Yuri K Dem’yanovich
    Mathematical Sciences, 2012, 6 (1)
  • [50] On Implementation of Non-Polynomial Spline Approximation
    Belyakova, O. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (05) : 689 - 695