Non-polynomial spline method for the time-fractional nonlinear Schrodinger equation

被引:21
|
作者
Li, Mingzhu [1 ,2 ]
Ding, Xiaohua [1 ]
Xu, Qiang [3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin, Heilongjiang, Peoples R China
[2] Qingdao Univ Qingdao, Sch Sci, Qingdao, Peoples R China
[3] Shandong Normal Univ, Sch Math & Stat, Jinan, Shandong, Peoples R China
关键词
Fractional Schrodinger equation; Non-polynomial spline; Stability; Fourier analysis; SPECTRAL COLLOCATION APPROXIMATION; SUB-DIFFUSION EQUATIONS; SYSTEM;
D O I
10.1186/s13662-018-1743-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a cubic non-polynomial spline method to solve the time-fractional nonlinear Schrodinger equation. The method is based on applying the L-1 formula to approximate the Caputo fractional derivative and employing the cubic non-polynomial spline functions to approximate the spatial derivative. By considering suitable relevant parameters, the scheme of order O(tau(2-alpha) + h(4)) has been obtained. The unconditional stability of the method is analyzed by the Fourier analysis. Numerical experiments are given to illustrate the effectiveness and accuracy of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Computational Solution of the Time-Fractional Schrodinger Equation by Using Trigonometric B-Spline Collocation Method
    Hadhoud, Adel R.
    Rageh, Abdulqawi A. M.
    Radwan, Taha
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [22] Numerical solution of Burgers equation with nonlinear damping using non-polynomial tension spline
    Shekarabi, H. S.
    Rashidinia, J.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (04): : 1109 - 1124
  • [23] A non-polynomial spline method for solving the one-dimensional heat equation
    Liu, Huan-Wen
    Liu, Li-Bin
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, : 782 - 785
  • [24] Non-polynomial Cubic Spline Method for Three-Dimensional Wave Equation
    Sattar R.
    Ahmad M.O.
    Pervaiz A.
    Ahmed N.
    Akgül A.
    International Journal of Applied and Computational Mathematics, 2023, 9 (6)
  • [25] A fractional spline collocation-Galerkin method for the time-fractional diffusion equation
    Pezza, L.
    Pitolli, F.
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2018, 9 (01): : 104 - 120
  • [26] Resonant optical solitons with conformable time-fractional nonlinear Schrodinger equation
    Seadawy, Aly R.
    Bilal, M.
    Younis, M.
    Rizvi, S. T. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (03):
  • [27] A higher order non-polynomial spline method for fractional sub-diffusion problems
    Li, Xuhao
    Wong, Patricia J. Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 46 - 65
  • [28] Advanced Methods for Conformable Time-Fractional Differential Equations: Logarithmic Non-Polynomial Splines
    Yousif, Majeed A.
    Agarwal, Ravi P.
    Mohammed, Pshtiwan Othman
    Lupas, Alina Alb
    Jan, Rashid
    Chorfi, Nejmeddine
    AXIOMS, 2024, 13 (08)
  • [29] The Exact Solutions of the Conformable Time-Fractional Modified Nonlinear Schrodinger Equation by the Trial Equation Method and Modified Trial Equation Method
    Aderyani, Safoura Rezaei
    Saadati, Reza
    Vahidi, Javad
    Allahviranloo, Tofigh
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [30] High-Accuracy Solutions to the Time-Fractional KdV-Burgers Equation Using Rational Non-Polynomial Splines
    Vivas-Cortez, Miguel
    Yousif, Majeed A.
    Mahmood, Bewar A.
    Mohammed, Pshtiwan Othman
    Chorfi, Nejmeddine
    Lupas, Alina Alb
    SYMMETRY-BASEL, 2025, 17 (01):