A mixed-effects multinomial logistic regression model

被引:236
|
作者
Hedeker, D [1 ]
机构
[1] Univ Illinois, Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL 60612 USA
关键词
nominal data; ordinal data; categorical data; multilevel data; logistic regression; maximum marginal likelihood; quadrature; clustering; repeated observations;
D O I
10.1002/sim.1522
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A mixed-effects multinomial logistic regression model is described for analysis of clustered or longitudinal nominal or ordinal response data. The model is parameterized to allow flexibility in the choice of contrasts used to represent comparisons across the response categories. Estimation is achieved using a maximum marginal likelihood (MML) solution that uses quadrature to numerically integrate over the distribution of random effects. An analysis of a psychiatric data set, in which homeless adults with serious mental illness are repeatedly classified in terms of their living arrangement, is used to illustrate features of the model. Copyright (C) 2003 by John Wiley Sons, Ltd.
引用
收藏
页码:1433 / 1446
页数:14
相关论文
共 50 条
  • [41] Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model
    Castilla, Elena
    Ghosh, Abhik
    ENTROPY, 2023, 25 (10)
  • [42] Developing a model of in-service training by using Multinomial Logistic Regression
    Yang, Hung-Jen
    Yu, Jui-Chen
    Yang, Hsieh-Hua
    RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), 2008, : 241 - +
  • [43] A Predictive Model for Heart Disease Diagnosis Based on Multinomial Logistic Regression
    Ai, Munandar Tb
    Sumiati, Sumiati
    Rosalina, Vidila
    INFORMATION TECHNOLOGY AND CONTROL, 2021, 50 (02): : 308 - 318
  • [44] A New Robust Approach for Multinomial Logistic Regression With Complex Design Model
    Castilla, Elena
    Chocano, Pedro J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (11) : 7379 - 7395
  • [45] A Logistic Normal Multinomial Regression Model for Microbiome Compositional Data Analysis
    Xia, Fan
    Chen, Jun
    Fung, Wing Kam
    Li, Hongzhe
    BIOMETRICS, 2013, 69 (04) : 1053 - 1063
  • [46] Sequential change-point detection in a multinomial logistic regression model
    Li, Fuxiao
    Chen, Zhanshou
    Xiao, Yanting
    OPEN MATHEMATICS, 2020, 18 : 807 - 819
  • [47] Correction: Detecting narwhal foraging behaviour from accelerometer and depth data using mixed-effects logistic regression
    Frederik H. Jensen
    Outi M. Tervo
    Mads Peter Heide-Jørgensen
    Susanne Ditlevsen
    Animal Biotelemetry, 11
  • [48] Estimating functional linear mixed-effects regression models
    Liu, Baisen
    Wang, Liangliang
    Cao, Jiguo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 106 : 153 - 164
  • [49] Perils and pitfalls of mixed-effects regression models in biology
    Silk, Matthew J.
    Harrison, Xavier A.
    Hodgson, David J.
    PEERJ, 2020, 8
  • [50] An Analysis of Seasonal Effects on Transport Mode Choices based on GPS Trajectories and a Multinomial Logistic Regression Model
    Otim, Timothy
    Ahmed, Dina Bousdar
    Diaz, Estefania Munoz
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 4221 - 4227