A mixed-effects multinomial logistic regression model

被引:236
|
作者
Hedeker, D [1 ]
机构
[1] Univ Illinois, Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL 60612 USA
关键词
nominal data; ordinal data; categorical data; multilevel data; logistic regression; maximum marginal likelihood; quadrature; clustering; repeated observations;
D O I
10.1002/sim.1522
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A mixed-effects multinomial logistic regression model is described for analysis of clustered or longitudinal nominal or ordinal response data. The model is parameterized to allow flexibility in the choice of contrasts used to represent comparisons across the response categories. Estimation is achieved using a maximum marginal likelihood (MML) solution that uses quadrature to numerically integrate over the distribution of random effects. An analysis of a psychiatric data set, in which homeless adults with serious mental illness are repeatedly classified in terms of their living arrangement, is used to illustrate features of the model. Copyright (C) 2003 by John Wiley Sons, Ltd.
引用
收藏
页码:1433 / 1446
页数:14
相关论文
共 50 条
  • [31] SEMIPARAMETRIC MULTINOMIAL MIXED-EFFECTS MODELS: A UNIVERSITY STUDENTS PROFILING TOOL
    Masci, Chiara
    Ieva, Francesca
    Paganoni, Anna Maria
    ANNALS OF APPLIED STATISTICS, 2022, 16 (03): : 1608 - 1632
  • [32] Logistic Regression Multinomial for Arrhythmia Detection
    Behadada, Omar
    Trovati, Marcello
    Chikh, M. A.
    Bessis, Nik
    Korkontzelos, Yannis
    2016 IEEE 1ST INTERNATIONAL WORKSHOPS ON FOUNDATIONS AND APPLICATIONS OF SELF* SYSTEMS (FAS*W), 2016, : 133 - 137
  • [33] Detecting narwhal foraging behaviour from accelerometer and depth data using mixed-effects logistic regression
    Jensen, Frederik H.
    Tervo, Outi M.
    Heide-orgensen, Mads Peter
    Ditlevsen, Susanne
    ANIMAL BIOTELEMETRY, 2023, 11 (01)
  • [34] Prevalence of Listeria monocytogenes in milk in Africa: a generalized logistic mixed-effects and meta-regression modelling
    Yinka D. Oluwafemi
    Bright E. Igere
    Temitope C. Ekundayo
    Oluwatosin A. Ijabadeniyi
    Scientific Reports, 13
  • [35] Mixed-effects model by projections
    Choi, Jaesung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1155 - 1163
  • [36] A Markov Mixed-Effect Multinomial Logistic Regression Model for Nominal Repeated Measures with an Application to Syntactic Self-Priming Effects
    Cho, Sun-Joo
    Watson, Duane
    Jacobs, Cassandra
    Naveiras, Matthew
    MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (03) : 476 - 495
  • [37] EFFECTS OF DIFFERENT TYPE OF COVARIATES AND SAMPLE SIZE ON PARAMETER ESTIMATION FOR MULTINOMIAL LOGISTIC REGRESSION MODEL
    Hamida, Hamzah Abdul
    Wah, Yap Bee
    Xie, Xian-Jin
    JURNAL TEKNOLOGI, 2016, 78 (12-3): : 155 - 161
  • [38] A multinomial logistic mixed model for the prediction of categorical spatial data
    Cao, Guofeng
    Kyriakidis, Phaedon C.
    Goodchild, Michael F.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2011, 25 (12) : 2071 - 2086
  • [39] A mixed-effects regression model for three-level ordinal response data
    Raman, R
    Hedeker, D
    STATISTICS IN MEDICINE, 2005, 24 (21) : 3331 - 3345
  • [40] A quantitative evaluation model for biodegraded reservoirs based on multinomial logistic regression
    Guo, Sujie
    Liu, Shuren
    Xu, Jiacheng
    Zhou, Ying
    Jiang, Weizhai
    Chen, Zhuo
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 227