Maximum General Sum-Connectivity Index for Trees with Given Independence Number

被引:0
|
作者
Tomescu, Ioan [1 ]
Jamil, Muhammad Kamran [2 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
关键词
TRENDS; GRAPHS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Des, Xu and Gutman [MATCH Commun. Math. Comput. Chem. 70(2013) 301-314] proved that in the class of trees of order n and independence number s, the spur S-n,S-s maximizes both first and second Zagreb indices and this graph is unique with these properties. In this paper, we show that in the same class of trees T, S-n,S-s is the unique graph maximizing zeroth-order general Randie index R-0(alpha)(T) for alpha > 1 and general sum-connectivity index x(alpha)(T) for alpha >= 1. This property does not hold for general Rancho index R-alpha(T) if alpha >= 2.
引用
收藏
页码:715 / 722
页数:8
相关论文
共 50 条
  • [41] EXTREMAL k-GENERALIZED QUASI TREES FOR GENERAL SUM-CONNECTIVITY INDEX
    Jamil, Muhammad Kamran
    Tomescu, Ioan
    Imran, Muhammad
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (02): : 101 - 106
  • [42] On the general sum-connectivity index of tricyclic graphs
    Zhu Z.
    Lu H.
    Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 177 - 188
  • [43] Some Inequalities for General Sum-Connectivity Index
    Milovanovic, I. Z.
    Milovanovic, E. I.
    Matejic, M.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 79 (02) : 477 - 489
  • [44] Sharp lower bounds on the sum-connectivity index of trees
    Alyar, S.
    Khoeilar, R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [45] MAXIMUM GENERAL SUM-CONNECTIVITY INDEX WITH-1 ≤ α < 0 FOR BICYCLIC GRAPHS
    Arshad, Misbah
    Tomescu, Ioan
    MATHEMATICAL REPORTS, 2017, 19 (01): : 93 - 96
  • [46] Cacti with maximal general sum-connectivity index
    Shahid Zaman
    Journal of Applied Mathematics and Computing, 2021, 65 : 147 - 160
  • [47] ON THE SUM-CONNECTIVITY INDEX
    Wang, Shilin
    Zhou, Bo
    Trinajstic, Nenad
    FILOMAT, 2011, 25 (03) : 29 - 42
  • [48] Extremum sum-connectivity index of trees and unicyclic graphs
    Shooshtari, Hajar
    Motamedi, Ruhollah
    Cancan, Murat
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (11)
  • [49] Extremal problems on the Atom-bond sum-connectivity indices of trees with given matching number or domination number
    Zhang, Yuan
    Wang, Haiying
    Su, Guifu
    Das, Kinkar Chandra
    DISCRETE APPLIED MATHEMATICS, 2024, 345 : 190 - 206
  • [50] Minimum general sum-connectivity index of unicyclic graphs
    Zhibin Du
    Bo Zhou
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2010, 48 : 697 - 703