HPMC crosslinked chitosan/hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications

被引:26
|
作者
Ali, Hafiz U. [1 ]
Iqbal, Dure N. [1 ]
Iqbal, Munawar [2 ]
Ezzine, Safa [3 ,4 ]
Arshad, Aysha [5 ]
Zeeshan, Rabia [5 ]
Chaudhry, Aqif A. [5 ]
Alshawwa, Samar Z. [6 ]
Nazir, Arif [1 ]
Khan, Ather F. [5 ]
机构
[1] Univ Lahore, Dept Chem, Lahore, Pakistan
[2] Univ Educ, Div Sci & Technol, Dept Chem, Lahore, Pakistan
[3] King Khalid Univ, Dept Chem, Coll Sci, POB 9004, Abha, Saudi Arabia
[4] Lab Mat & Environm Dev Durable LR18ES10, 9 Ave Dr Zoheir Safi, Tunis 1006, Tunisia
[5] COMSATS Univ Islamabad, Interdisciplinary Res Ctr Biomed Mat, Lahore Campus, Lahore, Pakistan
[6] Princess Nourah Bint Abdulrahman Univ, Coll Pharm, Dept Pharmaceut Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
Chitosan; Hydroxypropyl methyl cellu-lose; Composite scaffolds; Lemongrass essential oil; Bioactivity; Bone tissue engineering; NANOCRYSTALLINE HYDROXYAPATITE; COMPOSITE SCAFFOLDS; ANTIMICROBIAL PROPERTIES; MECHANICAL-PROPERTIES; CHITOSAN FILMS; ANTIBACTERIAL; FTIR; ANTIOXIDANT; PARTICLES; DELIVERY;
D O I
10.1016/j.arabjc.2022.103850
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The chitosan (CS), hydroxypropyl methyl cellulose (HPMC), hydroxyapatite (HAp and Lemon grass oil (LGO) based scaffolds was prepared by freeze gelation method. The composite for-mation was confirmed by FTIR (Fourier-transform infrared spectroscopy) analysis and surface morphology was evaluated by SEM (Scanning Electron Microscopy) analysis. The mechanical strength, biodegradation, swelling, porosity and antibacterial activity were evaluated on the basis of LGO contents. The scaffold structure was porous and the mechanical strength was enhanced as a function of LGO contents. The scaffold properties analysis revealed the biodegradation nature and swelling behavior of CS-HPMC-HAp-LGO was also affected significantly as a function of LGO contents. The cytotoxicity of CS-HPMC-HAp-LGO was studied against MC3T3-E1 cells and based on cell viability, no toxic sign was observed. The antimicrobial activity was evaluated against S. aureus and CS-HPMC-HAp-LGO scaffolds showed promising activity, which was varied as a function of LGO contents. The findings revealed that the CS-HPMC-HAp-LGO are biocom-patible and have potential for bone tissue engineering.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Preparation and evaluation of nano-hydroxyapatite/β-tricalciumphosphate/chitosan composite scaffolds for bone tissue engineering
    Lin, T.
    Zhang, S. M.
    Li, J.
    Zhang, L.
    Liu, Y. H.
    Xue, Y. H.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 463 - 466
  • [42] Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering
    Ma, Pengfei
    Wu, Wenjing
    Wei, Yu
    Ren, Le
    Lin, Shuxian
    Wu, Junhua
    MATERIALS & DESIGN, 2021, 207
  • [43] Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering
    Tripathi, Anjali
    Saravanan, Sekaran
    Pattnaik, Soumitri
    Moorthi, Ambigapathi
    Partridge, Nicola C.
    Selvamurugan, Nagarajan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 50 (01) : 294 - 299
  • [44] Novel selenium and/or copper substituted hydroxyapatite-gelatin-chitosan-eggshell membrane nanocomposite scaffolds for bone tissue engineering applications
    Korowash, Sara Ibrahim
    Sharifulden, Nik S. A. Nik
    Ibrahim, Doreya Mohamed
    Chau, David Y. S.
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2023, 21
  • [45] Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications
    Govindan, R.
    Kumar, G. Suresh
    Girija, E. K.
    RSC ADVANCES, 2015, 5 (74) : 60188 - 60198
  • [46] Extrusion freeform fabrication technique for tailoring hydroxyapatite scaffolds for bone tissue engineering applications
    Deisinger, U.
    Leiderer, M.
    Detsch, R.
    Hamisch, S.
    Ziegler, G.
    CYTOTHERAPY, 2006, 8 : 15 - 15
  • [47] Preparation and Characterization of TPP-Chitosan Crosslinked Scaffolds for Tissue Engineering
    Silvestro, Ilaria
    Francolini, Iolanda
    Di Lisio, Valerio
    Martinelli, Andrea
    Pietrelli, Loris
    Scotto D'Abusco, Anna
    Scoppio, Andromeda
    Piozzi, Antonella
    MATERIALS, 2020, 13 (16)
  • [48] Biocompatible scaffolds composed of chemically crosslinked chitosan and gelatin for tissue engineering
    Isabel Canas, Ana
    Paul Delgado, Jean
    Gartner, Carmina
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (33)
  • [49] Porous crosslinked polycaprolactone hydroxyapatite networks for bone tissue engineering
    Narjes Koupaei
    Akbar Karkhaneh
    Tissue Engineering and Regenerative Medicine, 2016, 13 : 251 - 260
  • [50] Porous Crosslinked Polycaprolactone Hydroxyapatite Networks for Bone Tissue Engineering
    Koupaei, Narjes
    Karkhaneh, Akbar
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2016, 13 (03) : 251 - 260