Novel selenium and/or copper substituted hydroxyapatite-gelatin-chitosan-eggshell membrane nanocomposite scaffolds for bone tissue engineering applications

被引:2
|
作者
Korowash, Sara Ibrahim [1 ,2 ]
Sharifulden, Nik S. A. Nik [2 ]
Ibrahim, Doreya Mohamed [1 ]
Chau, David Y. S. [2 ,3 ]
机构
[1] Natl Res Ctr, Dept Ceram, Cairo, Egypt
[2] UCL, Div Biomat & Tissue Engn, Eastman Dent Inst, London, England
[3] UCL, Royal Free Hosp, Eastman Dent Inst, Div Biomat & Tissue Engn, Rowland Hill St, London NW3 2PF, England
关键词
Selenium and/or copper substituted hydroxyapatite; gelatin; chitosan; eggshell membrane; tannic acid; scaffold; IN-VITRO; COLLAGEN; COMPLEX;
D O I
10.1177/22808000231187959
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Limitations with the majority of bone therapeutic treatments include low availability, ethical constraints and low biological compatibility. Although a number of choice materials have been exploited successfully, there has always been scope for improvement as well as development of the next-generation of materials. Herein, scaffolds - developed from gelatin, chitosan and eggshell membranes - were crosslinked using tannic acid, and further infused with selenium and/or copper substituted hydroxyapatite nanoparticles to generate a novel nanocomposite substrate. FESEM images of the nanocomposite scaffolds revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold, alongside XRD and FTIR profiling that detailed the formation of hydroxyapatite as a sole phase. Moreover, physical characterisation of the nanocomposite confirmed that the hydroxyapatite particulates and the eggshell membrane fibres were uniformly distributed and contributed to the surface roughness of the scaffold. Biocompatibility and cytotoxicity of the novel constructs were assessed using the mouse-derived osteoblastic cell line, MC3T3-E1, and standard cell culture assays. Metabolic activity assessment (i.e. MTS assay), LDH-release profiles and Live/Dead staining demonstrated good cell adhesion, viability, and proliferation rates. Accordingly, this work summarises the successful development of a novel construct which may be exploited as a clinical/therapeutic treatment for bone repair as well as a possible translational application as a novel biomaterial for the drug development pipeline.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A novel gelatin/carboxymethyl chitosan/nano-hydroxyapatite/β-tricalcium phosphate biomimetic nanocomposite scaffold for bone tissue engineering applications
    Sun, Qiushuo
    Yu, Lu
    Zhang, Zhuocheng
    Qian, Cheng
    Fang, Hongzhe
    Wang, Jintao
    Wu, Peipei
    Zhu, Xiaojing
    Zhang, Jian
    Zhong, Liangjun
    He, Rui
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [2] Synthesis and Characterization of Chitosan/Hydroxyapatite Nanocomposite for Bone Tissue Engineering Applications
    Rajapakse, H. D.
    Adikary, S. U.
    MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON 2021) / 7TH INTERNATIONAL MULTIDISCIPLINARY ENGINEERING RESEARCH CONFERENCE, 2021, : 555 - 560
  • [3] Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications
    Delabarde, Claire
    Plummer, Christopher J. G.
    Bourban, Pierre-Etienne
    Manson, Jan-Anders E.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (06) : 1371 - 1385
  • [4] Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications
    Claire Delabarde
    Christopher J. G. Plummer
    Pierre-Etienne Bourban
    Jan-Anders E. Månson
    Journal of Materials Science: Materials in Medicine, 2012, 23 : 1371 - 1385
  • [5] Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering
    Ma, Pengfei
    Wu, Wenjing
    Wei, Yu
    Ren, Le
    Lin, Shuxian
    Wu, Junhua
    MATERIALS & DESIGN, 2021, 207
  • [6] Characteristic of Bovine Hydroxyapatite-Gelatin-Chitosan Scaffolds as Biomaterial Candidate for Bone Tissue Engineering
    Kartikasari, Nadia
    Yuliati, Anita
    Listiana, Indah
    Setijanto, Darmawan
    Suardita, Ketut
    Ariani, Maretaningtyas Dwi
    Sosiawan, Agung
    2016 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2016, : 623 - 626
  • [7] Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: The impact of hydroxyapatite
    Saber-Samandari, Samaneh
    Saber-Samandari, Saeed
    Ghonjizade-Samani, Farnaz
    Aghazadeh, Jamshid
    Sadeghi, Ali
    CERAMICS INTERNATIONAL, 2016, 42 (09) : 11055 - 11062
  • [8] Chitosan-hydroxyapatite-MWCNTs nanocomposite patch for bone tissue engineering applications
    Sanchez, Alejandro Gomez
    Prokhorov, Evgen
    Luna-Barcenas, Gabriel
    Doval, R. Roman
    Mendoza, S.
    Rojas-Chavez, H.
    Vargas, Julia Hernandez
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [9] Electrospun biocompatible Gelatin- Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
    Ahmadi, Samira Arab
    Pezeshki-Modaress, Mohamad
    Irani, Shiva
    Zandi, Mojgan
    INTERNATIONAL JOURNAL OF NANO DIMENSION, 2019, 10 (02) : 169 - 179
  • [10] Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering
    Katti, Kalpana S.
    Katti, Dinesh R.
    Dash, Rajalaxmi
    BIOMEDICAL MATERIALS, 2008, 3 (03)