Novel selenium and/or copper substituted hydroxyapatite-gelatin-chitosan-eggshell membrane nanocomposite scaffolds for bone tissue engineering applications

被引:2
|
作者
Korowash, Sara Ibrahim [1 ,2 ]
Sharifulden, Nik S. A. Nik [2 ]
Ibrahim, Doreya Mohamed [1 ]
Chau, David Y. S. [2 ,3 ]
机构
[1] Natl Res Ctr, Dept Ceram, Cairo, Egypt
[2] UCL, Div Biomat & Tissue Engn, Eastman Dent Inst, London, England
[3] UCL, Royal Free Hosp, Eastman Dent Inst, Div Biomat & Tissue Engn, Rowland Hill St, London NW3 2PF, England
关键词
Selenium and/or copper substituted hydroxyapatite; gelatin; chitosan; eggshell membrane; tannic acid; scaffold; IN-VITRO; COLLAGEN; COMPLEX;
D O I
10.1177/22808000231187959
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Limitations with the majority of bone therapeutic treatments include low availability, ethical constraints and low biological compatibility. Although a number of choice materials have been exploited successfully, there has always been scope for improvement as well as development of the next-generation of materials. Herein, scaffolds - developed from gelatin, chitosan and eggshell membranes - were crosslinked using tannic acid, and further infused with selenium and/or copper substituted hydroxyapatite nanoparticles to generate a novel nanocomposite substrate. FESEM images of the nanocomposite scaffolds revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold, alongside XRD and FTIR profiling that detailed the formation of hydroxyapatite as a sole phase. Moreover, physical characterisation of the nanocomposite confirmed that the hydroxyapatite particulates and the eggshell membrane fibres were uniformly distributed and contributed to the surface roughness of the scaffold. Biocompatibility and cytotoxicity of the novel constructs were assessed using the mouse-derived osteoblastic cell line, MC3T3-E1, and standard cell culture assays. Metabolic activity assessment (i.e. MTS assay), LDH-release profiles and Live/Dead staining demonstrated good cell adhesion, viability, and proliferation rates. Accordingly, this work summarises the successful development of a novel construct which may be exploited as a clinical/therapeutic treatment for bone repair as well as a possible translational application as a novel biomaterial for the drug development pipeline.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
    Zhang, Yanzhong
    Venugopal, Jayarama Reddy
    El-Turki, Adel
    Ramakrishna, Seeram
    Su, Bo
    Lim, Chwee Teck
    BIOMATERIALS, 2008, 29 (32) : 4314 - 4322
  • [32] Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering
    Sani, Iman Shirzaei
    Rezaei, Mostafa
    Khoshfetrat, Ali Baradar
    Razzaghi, Donya
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 182 : 1638 - 1649
  • [33] Biopolymeric nanocomposite scaffolds for bone tissue engineering applications - A review
    Christy, P. Narmatha
    Basha, S. Khaleel
    Kumari, V. Sugantha
    Bashir, A. K. H.
    Maaza, M.
    Kaviyarasu, K.
    Arasu, Mariadhas Valan
    Al-Dhabi, Naif Abdullah
    Ignacimuthu, Savarimuthu
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2020, 55
  • [34] Fabrication of Polylactide Nanocomposite Scaffolds for Bone Tissue Engineering Applications
    Mkhabela, Vuyiswa J.
    Ray, Suprakas Sinha
    PROCEEDINGS OF PPS-30: THE 30TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY, 2015, 1664
  • [35] HPMC crosslinked chitosan/hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications
    Ali, Hafiz U.
    Iqbal, Dure N.
    Iqbal, Munawar
    Ezzine, Safa
    Arshad, Aysha
    Zeeshan, Rabia
    Chaudhry, Aqif A.
    Alshawwa, Samar Z.
    Nazir, Arif
    Khan, Ather F.
    ARABIAN JOURNAL OF CHEMISTRY, 2022, 15 (07)
  • [36] Extended release of proteins following encapsulation in hydroxyapatite/chitosan composite scaffolds for bone tissue engineering applications
    Devine, Declan M.
    Hoctor, Eilish
    Hayes, Jessica S.
    Sheehan, Eoin
    Evans, Christopher H.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 84 : 281 - 289
  • [37] Gelatin-hydroxyapatite Fibrous Nanocomposite for Regenerative Dentistry and bone Tissue Engineering
    Shahi, Shahriar
    Sharifi, Simin
    Khalilov, Rovshan
    Dizaj, Solmaz Maleki
    Abdolahinia, Elaheh Dalir
    OPEN DENTISTRY JOURNAL, 2022, 16
  • [38] Biomimetic cryogels based on carboxymethyl chitosan/gelatin/hydroxyapatite for bone tissue engineering
    Asadi, Bahar
    Mirzadeh, Hamid
    Olov, Nafiseh
    Samadikuchaksaraei, Ali
    Kheirbakhsh, Raheleh
    Moradi, Roshanak
    Amanpour, Saeid
    Bagheri-Khoulenjani, Shadab
    BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS, 2023, 12 (01) : 1 - 11
  • [39] Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering
    Bakhtiari, Leila
    Rezaie, Hamid Reza
    Hosseinalipour, Seyed Mohamad
    Shokrgozar, Mohamad Ali
    CERAMICS INTERNATIONAL, 2010, 36 (08) : 2421 - 2426
  • [40] Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Pallela, Ramjee
    Bhatnagar, Ira
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1033 - 1042