HPMC crosslinked chitosan/hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications

被引:26
|
作者
Ali, Hafiz U. [1 ]
Iqbal, Dure N. [1 ]
Iqbal, Munawar [2 ]
Ezzine, Safa [3 ,4 ]
Arshad, Aysha [5 ]
Zeeshan, Rabia [5 ]
Chaudhry, Aqif A. [5 ]
Alshawwa, Samar Z. [6 ]
Nazir, Arif [1 ]
Khan, Ather F. [5 ]
机构
[1] Univ Lahore, Dept Chem, Lahore, Pakistan
[2] Univ Educ, Div Sci & Technol, Dept Chem, Lahore, Pakistan
[3] King Khalid Univ, Dept Chem, Coll Sci, POB 9004, Abha, Saudi Arabia
[4] Lab Mat & Environm Dev Durable LR18ES10, 9 Ave Dr Zoheir Safi, Tunis 1006, Tunisia
[5] COMSATS Univ Islamabad, Interdisciplinary Res Ctr Biomed Mat, Lahore Campus, Lahore, Pakistan
[6] Princess Nourah Bint Abdulrahman Univ, Coll Pharm, Dept Pharmaceut Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
Chitosan; Hydroxypropyl methyl cellu-lose; Composite scaffolds; Lemongrass essential oil; Bioactivity; Bone tissue engineering; NANOCRYSTALLINE HYDROXYAPATITE; COMPOSITE SCAFFOLDS; ANTIMICROBIAL PROPERTIES; MECHANICAL-PROPERTIES; CHITOSAN FILMS; ANTIBACTERIAL; FTIR; ANTIOXIDANT; PARTICLES; DELIVERY;
D O I
10.1016/j.arabjc.2022.103850
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The chitosan (CS), hydroxypropyl methyl cellulose (HPMC), hydroxyapatite (HAp and Lemon grass oil (LGO) based scaffolds was prepared by freeze gelation method. The composite for-mation was confirmed by FTIR (Fourier-transform infrared spectroscopy) analysis and surface morphology was evaluated by SEM (Scanning Electron Microscopy) analysis. The mechanical strength, biodegradation, swelling, porosity and antibacterial activity were evaluated on the basis of LGO contents. The scaffold structure was porous and the mechanical strength was enhanced as a function of LGO contents. The scaffold properties analysis revealed the biodegradation nature and swelling behavior of CS-HPMC-HAp-LGO was also affected significantly as a function of LGO contents. The cytotoxicity of CS-HPMC-HAp-LGO was studied against MC3T3-E1 cells and based on cell viability, no toxic sign was observed. The antimicrobial activity was evaluated against S. aureus and CS-HPMC-HAp-LGO scaffolds showed promising activity, which was varied as a function of LGO contents. The findings revealed that the CS-HPMC-HAp-LGO are biocom-patible and have potential for bone tissue engineering.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering
    Frohbergh, Michael E.
    Katsman, Anna
    Botta, Gregory R.
    Lazarovici, Phillip
    Schauer, Caroline L.
    Wegst, Ulrike G. K.
    Lelkes, Peter I.
    BIOMATERIALS, 2012, 33 (36) : 9167 - 9178
  • [2] Gelatin cryogels crosslinked with oxidized dextran and containing freshly formed hydroxyapatite as potential bone tissue-engineering scaffolds
    Inci, Ilyas
    Kirsebom, Harald
    Galaev, Igor Yu
    Mattiasson, Bo
    Piskin, Erhan
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2013, 7 (07) : 584 - 588
  • [3] Hydroxyapatite scaffolds containing copper for bone tissue engineering
    Fanrong Ai
    Litao Chen
    Jinchao Yan
    Kang Yang
    Shuiyuan Li
    Huyang Duan
    Chuanliang Cao
    Wenchao Li
    Kui Zhou
    Journal of Sol-Gel Science and Technology, 2020, 95 : 168 - 179
  • [4] Hydroxyapatite scaffolds containing copper for bone tissue engineering
    Ai, Fanrong
    Chen, Litao
    Yan, Jinchao
    Yang, Kang
    Li, Shuiyuan
    Duan, Huyang
    Cao, Chuanliang
    Li, Wenchao
    Zhou, Kui
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2020, 95 (01) : 168 - 179
  • [5] Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications
    Zafeiris, K.
    Brasinika, D.
    Karatza, A.
    Koumoulos, Elias
    Karoussis, I. K.
    Kyriakidou, K.
    Charitidis, C. A.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 119
  • [6] Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering
    Shakir, Mohammad
    Jolly, Reshma
    Khan, Mohd Shoeb
    Rauf, Ahmar
    Kazmi, Shadab
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 93 : 276 - 289
  • [7] Extended release of proteins following encapsulation in hydroxyapatite/chitosan composite scaffolds for bone tissue engineering applications
    Devine, Declan M.
    Hoctor, Eilish
    Hayes, Jessica S.
    Sheehan, Eoin
    Evans, Christopher H.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 84 : 281 - 289
  • [8] Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications
    Ji, Chengdong
    Shi, Jeffrey
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (07): : 3780 - 3785
  • [9] Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Pallela, Ramjee
    Bhatnagar, Ira
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1033 - 1042
  • [10] Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering
    Long, Teng
    Liu, Yu-Tai
    Tang, Sha
    Sun, Jin-Liang
    Guo, Ya-Ping
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (08) : 1740 - 1748