Temperature effects in semiconductor quantum dot lasers

被引:18
|
作者
Fafard, S [1 ]
Hinzer, K
Springthorpe, AJ
Feng, Y
McCaffrey, J
Charbonneau, S
Griswold, EM
机构
[1] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
[2] Nortel Technol, Adv Technol Lab, Ottawa, ON K1Y 4H7, Canada
[3] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
quantum dot; laser diode; nano-optics; self-assembled; molecular beam epitaxy; quantum well; indium aluminium arsenide; spontaneous emission;
D O I
10.1016/S0921-5107(97)00241-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Self-assembled quantum dots (QDs) of highly strained InAlAs have been grown by molecular beam epitaxy (MBE) in separate confinement p-i-n heterostructres on (001) GaAs substrates. At low temperatures, the lasing threshold currents for red-emitting QD lasers are found to be more temperature-independent than for quantum well (QW) lasers. At higher temperatures, the temperature dependence of the threshold currents is governed mainly by the depth of the separate confinement region which was designed to obtain QD lasers capable of room temperature emission with simple broad area laser devices having external efficiencies of similar to 13% at low temperatures. Crown copyright (C) 1998 Published by Elsevier Science S.A. All rights reserved.
引用
收藏
页码:114 / 117
页数:4
相关论文
共 50 条
  • [41] High-power quantum dot semiconductor disk lasers
    Rautiainen, Jussi
    Butkus, Mantas
    Krestnikov, Igor
    Rafailov, Edik U.
    Okhotnikov, Oleg
    [J]. VERTICAL EXTERNAL CAVITY SURFACE EMITTING LASERS (VECSELS) II, 2012, 8242
  • [42] Advances in self-assembled semiconductor quantum dot lasers
    Henini, M
    Bugajski, M
    [J]. MICROELECTRONICS JOURNAL, 2005, 36 (11) : 950 - 956
  • [43] Proton radiation effects in quantum dot lasers
    Gonda, Shun-ichi
    Tsutsumi, Hiroyuki
    Ishigami, Ryoya
    Kume, Kyo
    Ito, Yoshifumi
    Ishida, Mitsuru
    Arakawa, Yasuhiko
    [J]. APPLIED SURFACE SCIENCE, 2008, 255 (03) : 676 - 678
  • [44] Inhomogeneous gain effects in quantum dot lasers
    Spencer, P.
    Clarke, E.
    Howe, R.
    Murray, R.
    [J]. ELECTRONICS LETTERS, 2007, 43 (10) : 574 - 576
  • [45] Temperature dependence of the wavelength of quantum dot lasers.
    Thomson, J
    Summers, H
    Smowton, P
    Herrmann, E
    Blood, P
    Hopkinson, M
    [J]. 2000 IEEE 17TH INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE, CONFERENCE DIGEST, 2000, : 135 - 136
  • [46] Spin effects in semiconductor quantum dot structures
    Tarucha, S
    Austing, DG
    Sasaki, S
    Tokura, Y
    Elzerman, JM
    van der Wiel, W
    de Franseschi, S
    Kouwenhoven, LP
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 10 (1-3): : 45 - 51
  • [47] The effect of optical polarized feedback on dynamics of quantum dot semiconductor lasers
    Seham A. Al Jabri
    Hussein B. Al Husseini
    [J]. Indian Journal of Physics, 2024, 98 : 741 - 751
  • [48] Carrier scenarios in optically injected quantum-dot semiconductor lasers
    Ghalib, Basim Abdullattif
    Al-Obaidi, Sabri J.
    Al-Khursan, Amin H.
    [J]. OPTICS COMMUNICATIONS, 2013, 308 : 243 - 247
  • [49] Ultrafast and nonlinear dynamics of InAs/GaAs semiconductor quantum dot lasers
    Grillot, F.
    Arsenijevic, D.
    Huang, H.
    Bimberg, D.
    [J]. QUANTUM DOTS AND NANOSTRUCTURES: GROWTH, CHARACTERIZATION, AND MODELING XV, 2018, 10543
  • [50] Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers
    Lu Zunren
    Zhang Zhongkai
    Wang Hong
    Ding Yunyun
    Yang Xiaoguang
    Meng Lei
    Chai Hongyu
    Yang Tao
    [J]. CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (07):