Temperature effects in semiconductor quantum dot lasers

被引:18
|
作者
Fafard, S [1 ]
Hinzer, K
Springthorpe, AJ
Feng, Y
McCaffrey, J
Charbonneau, S
Griswold, EM
机构
[1] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
[2] Nortel Technol, Adv Technol Lab, Ottawa, ON K1Y 4H7, Canada
[3] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
quantum dot; laser diode; nano-optics; self-assembled; molecular beam epitaxy; quantum well; indium aluminium arsenide; spontaneous emission;
D O I
10.1016/S0921-5107(97)00241-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Self-assembled quantum dots (QDs) of highly strained InAlAs have been grown by molecular beam epitaxy (MBE) in separate confinement p-i-n heterostructres on (001) GaAs substrates. At low temperatures, the lasing threshold currents for red-emitting QD lasers are found to be more temperature-independent than for quantum well (QW) lasers. At higher temperatures, the temperature dependence of the threshold currents is governed mainly by the depth of the separate confinement region which was designed to obtain QD lasers capable of room temperature emission with simple broad area laser devices having external efficiencies of similar to 13% at low temperatures. Crown copyright (C) 1998 Published by Elsevier Science S.A. All rights reserved.
引用
收藏
页码:114 / 117
页数:4
相关论文
共 50 条
  • [1] Temperature effects in semiconductor quantum dot lasers
    Fafard, S.
    Hinzer, K.
    Springthorpe, A.J.
    Feng, Y.
    McCaffrey, J.
    Charbonneau, S.
    Griswold, E.M.
    [J]. Materials science & engineering. B, Solid-state materials for advanced technology, 1998, B51 (1-3): : 114 - 117
  • [2] Semiconductor quantum dot lasers
    Ustinov, V
    Zhukov, A
    Egorov, A
    Kovsh, A
    Maleev, N
    Semenova, E
    Maximov, M
    Ledentsov, N
    Alferov, Z
    [J]. OPTICAL MATERIALS AND APPLICATIONS, 2005, 5946
  • [3] Quantum dot semiconductor lasers
    Ustinov, VM
    [J]. NANOSTRUCTURES: SYNTHESIS, FUNCTIONAL PROPERTIES AND APPLICATIONS, 2003, 128 : 543 - 559
  • [4] Quantum dot semiconductor lasers
    Reithmaier, JP
    Deubert, S
    Somers, A
    Kaiser, W
    Forchel, A
    Auzanneau, S
    Calligaro, M
    Michel, N
    Bansropun, S
    Krakowski, M
    Sumpf, B
    Erbert, G
    Fricke, J
    Tränkle, G
    Alizon, R
    Hadass, D
    Bilenca, A
    Dery, H
    Mikhelashvili, B
    Eisenstein, G
    [J]. 2004 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2004, : 204 - 205
  • [5] Temperature dependent linewidth rebroadening in quantum dot semiconductor lasers
    Koester, Felix
    Duan Jianan
    Dong Bozhang
    Huang Heming
    Grillot, Frederic
    Luedge, Kathy
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (23)
  • [6] Semiconductor Quantum Dot Lasers: A Tutorial
    Coleman, James J.
    Young, Jonathan D.
    Garg, Akash
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2011, 29 (04) : 499 - 510
  • [7] Quantum-dot semiconductor disk lasers
    Germann, T. D.
    Strittmatter, A.
    Pohl, U. W.
    Bimberg, D.
    Rautiainen, J.
    Guina, M.
    Okhotnikov, O. G.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2008, 310 (23) : 5182 - 5186
  • [8] Semiconductor quantum-dot lasers and amplifiers
    Hvam, JM
    Borri, P
    Ledentsov, NN
    Bimberg, D
    [J]. SEMICONDUCTOR LASERS AND OPTICAL AMPLIFIERS FOR LIGHTWAVE COMMUNICATION SYSTEMS, 2002, 4871 : 130 - 140
  • [9] Mode structure of quantum dot semiconductor lasers
    Tanguy, Y
    Muszalski, J
    Houlihan, J
    Huyet, G
    Pearce, EJ
    Smowton, PM
    Hopkinson, M
    [J]. SEMICONDUCTOR LASERS AND LASER DYNAMICS, 2004, 5452 : 518 - 525
  • [10] Modeling of synchronization in quantum dot semiconductor lasers
    Ghalib, Basim Abdullattif
    Al-Obaidi, Sabri J.
    Al-Khursan, Amin H.
    [J]. OPTICS AND LASER TECHNOLOGY, 2013, 48 : 453 - 460