In this paper, we study the homoclinic solutions of the following second- order Hamiltonian system mu - L(t)u + Delta W(t, u) = 0 where t is an element of R, u is an element of R-N, L:R -> R(N)x(N) and W : R x R-N -> R. Applying the symmetric Mountain Pass Theorem, we establish a couple of sufficient conditions on the existence of infinitely many homoclinic solutions. Our results significantly generalize and improve related ones in the literature. For example, L( t) is not necessary to be uniformly positive definite or coercive; through W( t, x) is still assumed to be superquadratic near vertical bar x vertical bar = infinity it is not assumed to be superquadratic near x = 0. (C) 2015 WILEY- VCH Verlag GmbH & Co. KGaA, Weinheim
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Tang, X. H.
Xiao, Li
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Tang, X. H.
Lin, Xiaoyan
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Huaihua Coll, Dept Math, Huaihua 418008, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China