Exact master equations for the non-Markovian decay of a qubit

被引:101
|
作者
Vacchini, Bassano [1 ,2 ]
Breuer, Heinz-Peter [3 ]
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[3] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
关键词
GENERATORS;
D O I
10.1103/PhysRevA.81.042103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Exact master equations describing the decay of a two-state system into a structured reservoir are constructed. By employing the exact solution for the model, analytical expressions are determined for the memory kernel of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless master equation. This approach allows an explicit comparison of the convergence behavior of the corresponding perturbation expansions. Moreover, the structure of widely used phenomenological master equations with a memory kernel may be incompatible with a nonperturbative treatment of the underlying microscopic model. Several physical implications of the results on the microscopic analysis and the phenomenological modeling of non-Markovian quantum dynamics of open systems are discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
    Chen, Yusui
    You, J. Q.
    Yu, Ting
    [J]. PHYSICAL REVIEW A, 2014, 90 (05)
  • [2] Markovian and non-Markovian master equations versus an exactly solvable model of a qubit in a cavity
    Xia, Zihan
    Garcia-Nila, Juan
    Lidar, Daniel A.
    [J]. PHYSICAL REVIEW APPLIED, 2024, 22 (01):
  • [3] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
    Ding Bang-Fu
    Wang Xiao-Yun
    Tang Yan-Fang
    Mi Xian-Wu
    Zhao He-Ping
    [J]. CHINESE PHYSICS B, 2011, 20 (06)
  • [4] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
    丁邦福
    王小云
    唐艳芳
    米贤武
    赵鹤平
    [J]. Chinese Physics B, 2011, 20 (06) : 29 - 33
  • [5] EXACT OPTICAL MASTER-EQUATIONS FOR NON-MARKOVIAN DEPHASING IN SMALL MOLECULES
    VOGEL, W
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (01) : 129 - 133
  • [6] A tomographic approach to non-Markovian master equations
    Bellomo, Bruno
    De Pasquale, Antonella
    Gualdi, Giulia
    Marzolino, Ugo
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (39)
  • [7] Positivity preserving non-Markovian master equations
    Wilkie, J
    [J]. PHYSICAL REVIEW E, 2000, 62 (06) : 8808 - 8810
  • [8] On the Structure of Generators for Non-Markovian Master Equations
    Kossakowski, Andrzej
    Rebolledo, Rolando
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2009, 16 (2-3): : 259 - 268
  • [9] Selected aspects of Markovian and non-Markovian quantum master equations
    Lendi, K
    [J]. IRREVERSIBLE QUANTUM DYNAMICS, 2003, 622 : 31 - 46
  • [10] Non-Markovian master equations from piecewise dynamics
    Vacchini, Bassano
    [J]. PHYSICAL REVIEW A, 2013, 87 (03)