A tomographic approach to non-Markovian master equations

被引:22
|
作者
Bellomo, Bruno [1 ,2 ,3 ,4 ]
De Pasquale, Antonella [1 ,2 ,5 ,6 ]
Gualdi, Giulia [1 ,2 ,7 ,8 ,9 ,10 ]
Marzolino, Ugo [1 ,2 ,11 ,12 ]
机构
[1] Univ Naples Federico II, MECENAS, Naples, Italy
[2] Univ Bari, I-70121 Bari, Italy
[3] CNISM, I-90123 Palermo, Italy
[4] Univ Palermo, Dipartimento Sci Fis & Astron, I-90123 Palermo, Italy
[5] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[6] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[7] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[8] CNR, SPIN, I-00185 Rome, Italy
[9] Ist Nazl Fis Nucl, Sez Napoli, Grp Collegato Salerno, Naples, Italy
[10] CNISM Unita Salerno, Salerno, Italy
[11] Univ Trieste, Dipartimento Fis, I-34151 Trieste, Italy
[12] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
关键词
QUANTUM BROWNIAN-MOTION; GENERAL ENVIRONMENT; HARMONIC-OSCILLATOR; SYSTEMS; BATH;
D O I
10.1088/1751-8113/43/39/395303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a procedure based on symplectic tomography for reconstructing the unknown parameters of a convolutionless non-Markovian Gaussian noisy evolution. Whenever the time-dependent master equation coefficients are given as a function of some unknown time-independent parameters, we show that these parameters can be reconstructed by means of a finite number of tomograms. Two different approaches towards reconstruction, integral and differential, are presented and applied to a benchmark model made up of a harmonic oscillator coupled to a bosonic bath. For this model the number of tomograms needed to retrieve the unknown parameters is explicitly computed.
引用
收藏
页数:13
相关论文
共 50 条