On the Periodic Solutions of the Five-Dimensional Lorenz Equation Modeling Coupled Rosby Waves and Gravity Waves

被引:0
|
作者
Carvalho, Tiago [1 ]
Llibre, Jaume [2 ]
机构
[1] UNESP, Dept Matemat, Fac Ciencias, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
来源
基金
巴西圣保罗研究基金会;
关键词
Lorenz system; periodic solution; averaging theory; SLOW MANIFOLD; SYSTEM;
D O I
10.1142/S0218127417500900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lorenz studied the coupled Rosby waves and gravity waves using the differential system (U) over dot = -VW + bVZ, (V) over dot = UW -bUZ, (W) over dot = -UV, (X) over dot = -Z, Z over dot = bUV + X. This system has the two first integrals H-1 = U-2 + V-2, H-2 = V-2 + W-2 + X-2 + Z(2). Our main result shows that in each invariant set {H-1 = h(1) > 0} boolean AND {H-2 = h(2) > 0} there are at least four (resp., 2) periodic solutions of the differential system with b not equal 0 and h(2) > h(1) (resp., h(2) < h(1)).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Exploration of solitary waves and periodic optical soliton solutions to the nonlinear two dimensional Zakharov-Kuzetsov equation
    Alammari, Maha
    Iqbal, Mujahid
    Ibrahim, Salisu
    Alsubaie, Nahaa E.
    Seadawy, Aly R.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
  • [42] SL(4, R) generating symmetry in five-dimensional gravity coupled to dilaton and three-form
    Chen, CM
    Gal'tsov, DV
    Maeda, K
    Sharakin, SA
    PHYSICS LETTERS B, 1999, 453 (1-2) : 7 - 16
  • [43] Interactions among Periodic Waves and Solitary Waves of the (2+1)-Dimensional Konopelchenko-Dubrovsky Equation
    Lei Ya
    Lou Sen-Yue
    CHINESE PHYSICS LETTERS, 2013, 30 (06)
  • [44] Nonlocal symmetries, solitary waves and cnoidal periodic waves of the (2+1)-dimensional breaking soliton equation
    Zou, Li
    Tian, Shou-Fu
    Feng, Lian-Li
    MODERN PHYSICS LETTERS B, 2017, 31 (36):
  • [45] Lie symmetries, solitary wave solutions, and conservation laws of coupled KdV-mKdV equation for internal gravity waves
    Kumar, Mukesh
    Anand, Sushmita
    Tanwar, Dig Vijay
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (08) : 6909 - 6927
  • [46] Interactions among Periodic Waves and Solitary Waves of the(2+1)-Dimensional Konopelchenko-Dubrovsky Equation
    雷娅
    楼森岳
    Chinese Physics Letters, 2013, 30 (06) : 9 - 12
  • [47] Quasi-Periodic, Periodic Waves, and Soliton Solutions for the Combined KdV-mKdV Equation
    Abdel-Salam, Emad A. -B.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (9-10): : 639 - 645
  • [48] Soliton solutions of a (3+1)-dimensional nonlinear evolution equation for modeling the dynamics of ocean waves
    Jadaun, Vishakha
    PHYSICA SCRIPTA, 2021, 96 (09)
  • [49] 3-DIMENSIONAL DISPERSION-EQUATION FOR MHD-GRAVITY WAVES
    GUARENE, E
    PERONA, GE
    RIVISTA ITALIANA DI GEOFISICA E SCIENZE AFFINI, 1977, 4 (3-4): : 143 - 148
  • [50] ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION
    Ebadi, Ghodrat
    Yousefzadeh, Nazila
    Triki, Houria
    Yildirim, Ahmet
    Biswas, Anjan
    ROMANIAN REPORTS IN PHYSICS, 2012, 64 (04) : 915 - 932