On the Periodic Solutions of the Five-Dimensional Lorenz Equation Modeling Coupled Rosby Waves and Gravity Waves

被引:0
|
作者
Carvalho, Tiago [1 ]
Llibre, Jaume [2 ]
机构
[1] UNESP, Dept Matemat, Fac Ciencias, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
来源
基金
巴西圣保罗研究基金会;
关键词
Lorenz system; periodic solution; averaging theory; SLOW MANIFOLD; SYSTEM;
D O I
10.1142/S0218127417500900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lorenz studied the coupled Rosby waves and gravity waves using the differential system (U) over dot = -VW + bVZ, (V) over dot = UW -bUZ, (W) over dot = -UV, (X) over dot = -Z, Z over dot = bUV + X. This system has the two first integrals H-1 = U-2 + V-2, H-2 = V-2 + W-2 + X-2 + Z(2). Our main result shows that in each invariant set {H-1 = h(1) > 0} boolean AND {H-2 = h(2) > 0} there are at least four (resp., 2) periodic solutions of the differential system with b not equal 0 and h(2) > h(1) (resp., h(2) < h(1)).
引用
收藏
页数:6
相关论文
共 50 条