Identification of Lags in Nonlinear Autoregressive Time Series Using a Flexible Fuzzy Model

被引:14
|
作者
Veloz, A. [1 ,2 ]
Salas, R. [2 ]
Allende-Cid, H. [3 ]
Allende, H. [1 ]
Moraga, C. [4 ,5 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Informat, Valparaiso, Chile
[2] Univ Valparaiso, Escuela Ingn Biomed, Valparaiso, Chile
[3] Pontificia Univ Catolica Valparaiso, Escuela Ingn Informat, Valparaiso, Chile
[4] European Ctr Soft Comp, Mieres 33600, Spain
[5] Tech Univ Dortmund, D-44221 Dortmund, Germany
关键词
Lags identification; Takagi-Sugeno-Kang fuzzy model; Nonlinear autoregressive time series; Vector autoregressive time series; Time series analysis; FUNCTION APPROXIMATION; EMBEDDING DIMENSION; VECTOR QUANTIZATION; INPUT SELECTION; NEURAL-NETWORKS; ORDER; ALGORITHM; INFERENCE;
D O I
10.1007/s11063-015-9438-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a method to find the set of the most influential lags and the rule structure of a Takagi-Sugeno-Kang (TSK) fuzzy model for time series applications. The proposed method resembles the techniques that prioritize lags, evaluating the proximity of nearby samples in the input space using the closeness of the corresponding target values. Clusters of samples are generated, and the consistency of the mapping between the predicted variable and the set of candidate past values is evaluated. A TSK model is established, and possible redundancies in the rule base are avoided. The proposed method is evaluated using simulated and real data. Several simulation experiments were conducted for five synthetic nonlinear autoregressive processes, two nonlinear vector autoregressive processes and eight benchmark time series. The results show a competitive performance in the mean square error and a promising ability to find a proper set of lags for a given autoregressive process.
引用
收藏
页码:641 / 666
页数:26
相关论文
共 50 条
  • [31] TIME SERIES MODEL BUILDING WITH FOURIER AUTOREGRESSIVE MODEL
    Taiwo, A., I
    Olatayo, T. O.
    Agboluaje, S. A.
    SOUTH AFRICAN STATISTICAL JOURNAL, 2020, 54 (02) : 243 - 254
  • [32] An Autoregressive Model for Time Series of Circular Data
    Artes, Rinaldo
    Toloi, Clelia M. C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (01) : 186 - 194
  • [33] Nonlinear oscillations in business cycle model with time lags
    Szydlowski, M
    Krawiec, A
    Tobola, J
    CHAOS SOLITONS & FRACTALS, 2001, 12 (03) : 505 - 517
  • [34] FUZZY AUTOREGRESSIVE RULES: TOWARDS LINGUISTIC TIME SERIES MODELING
    Luis Aznarte, Jose
    Alcala-Fdez, Jesus
    Arauzo, Antonio
    Manuel Benitez, Jose
    ECONOMETRIC REVIEWS, 2011, 30 (06) : 646 - 668
  • [35] Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models
    Division of Biophysical Engineering, Dept. of Systems and Human Science, Osaka University, Toyonaka City, Osaka 560-8531, Japan
    Phys Rev E., 1 (1073-1076):
  • [36] Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models
    Bagarinao, E
    Pakdaman, K
    Nomura, T
    Sato, S
    PHYSICAL REVIEW E, 1999, 60 (01): : 1073 - 1076
  • [37] Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
    Lukoseviciute, Kristina
    Ragulskis, Minvydas
    NEUROCOMPUTING, 2010, 73 (10-12) : 2077 - 2088
  • [38] A fuzzy identification procedure for nonlinear time series: With example on ARCH and bilinear models
    Wu, BL
    Hung, SL
    FUZZY SETS AND SYSTEMS, 1999, 108 (03) : 275 - 287
  • [39] Fuzzy-memetic approach for prediction of chaotic time series and nonlinear identification
    Coelho, LD
    Rudek, M
    Canciglieri, O
    SOFT COMPUTING AND INDUSTRY: RECENT APPLICATIONS, 2002, : 757 - 768
  • [40] Predicting global energy demand for the next decade: A time-series model using nonlinear autoregressive neural networks
    Abu Al-Haija, Qasem
    Mohamed, Omar
    Abu Elhaija, Wejdan
    ENERGY EXPLORATION & EXPLOITATION, 2023, 41 (06) : 1884 - 1898