Identification of Lags in Nonlinear Autoregressive Time Series Using a Flexible Fuzzy Model

被引:14
|
作者
Veloz, A. [1 ,2 ]
Salas, R. [2 ]
Allende-Cid, H. [3 ]
Allende, H. [1 ]
Moraga, C. [4 ,5 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Informat, Valparaiso, Chile
[2] Univ Valparaiso, Escuela Ingn Biomed, Valparaiso, Chile
[3] Pontificia Univ Catolica Valparaiso, Escuela Ingn Informat, Valparaiso, Chile
[4] European Ctr Soft Comp, Mieres 33600, Spain
[5] Tech Univ Dortmund, D-44221 Dortmund, Germany
关键词
Lags identification; Takagi-Sugeno-Kang fuzzy model; Nonlinear autoregressive time series; Vector autoregressive time series; Time series analysis; FUNCTION APPROXIMATION; EMBEDDING DIMENSION; VECTOR QUANTIZATION; INPUT SELECTION; NEURAL-NETWORKS; ORDER; ALGORITHM; INFERENCE;
D O I
10.1007/s11063-015-9438-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a method to find the set of the most influential lags and the rule structure of a Takagi-Sugeno-Kang (TSK) fuzzy model for time series applications. The proposed method resembles the techniques that prioritize lags, evaluating the proximity of nearby samples in the input space using the closeness of the corresponding target values. Clusters of samples are generated, and the consistency of the mapping between the predicted variable and the set of candidate past values is evaluated. A TSK model is established, and possible redundancies in the rule base are avoided. The proposed method is evaluated using simulated and real data. Several simulation experiments were conducted for five synthetic nonlinear autoregressive processes, two nonlinear vector autoregressive processes and eight benchmark time series. The results show a competitive performance in the mean square error and a promising ability to find a proper set of lags for a given autoregressive process.
引用
收藏
页码:641 / 666
页数:26
相关论文
共 50 条
  • [21] Forecasting chaotic time series of exchange rate based on nonlinear autoregressive model
    Jiang, Chuanjin
    Song, Fugen
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 5, 2010, : 238 - 241
  • [22] Noise fuzzy clustering of time series by autoregressive metric
    D'Urso P.
    De Giovanni L.
    Massari R.
    Di Lallo D.
    METRON, 2013, 71 (3) : 217 - 243
  • [23] On A New Framework of Autoregressive Fuzzy Time Series Models
    Song, Qiang
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2014, 13 (04): : 357 - 368
  • [24] SIFAR: Self-Identification of Lags of an Autoregressive TSK-based Model
    Veloz, Alejandro
    Salas, Rodrigo
    Allende-Cid, Hector
    Allende, Hector
    2012 42ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2012, : 226 - 231
  • [25] Variance estimation in nonlinear autoregressive time series models
    Cheng, Fuxia
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1588 - 1592
  • [26] A forecasting procedure for nonlinear autoregressive time series models
    Cai, YZ
    JOURNAL OF FORECASTING, 2005, 24 (05) : 335 - 351
  • [27] Nonlinear maximum likelihood estimation of autoregressive time series
    McWhorter, LT
    Scharf, LL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (12) : 2909 - 2919
  • [28] NONLINEAR AUTOREGRESSIVE MODEL-BASED ON FUZZY RELATION
    IKOMA, N
    HIROTA, K
    INFORMATION SCIENCES, 1993, 71 (1-2) : 131 - 144
  • [29] Estimation of the exponential autoregressive time series model by using the genetic algorithm
    Shi, Z
    Aoyama, H
    JOURNAL OF SOUND AND VIBRATION, 1997, 205 (03) : 309 - 321
  • [30] NONLINEAR EXPONENTIAL AUTOREGRESSIVE TIME-SERIES MODEL WITH MOVING AVERAGE ERRORS : AN APPLICATION
    Ranganath, H. K.
    Ghosh, Himadri
    Prajneshu
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2016, 12 (02): : 409 - 414