Identification of Lags in Nonlinear Autoregressive Time Series Using a Flexible Fuzzy Model

被引:14
|
作者
Veloz, A. [1 ,2 ]
Salas, R. [2 ]
Allende-Cid, H. [3 ]
Allende, H. [1 ]
Moraga, C. [4 ,5 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Informat, Valparaiso, Chile
[2] Univ Valparaiso, Escuela Ingn Biomed, Valparaiso, Chile
[3] Pontificia Univ Catolica Valparaiso, Escuela Ingn Informat, Valparaiso, Chile
[4] European Ctr Soft Comp, Mieres 33600, Spain
[5] Tech Univ Dortmund, D-44221 Dortmund, Germany
关键词
Lags identification; Takagi-Sugeno-Kang fuzzy model; Nonlinear autoregressive time series; Vector autoregressive time series; Time series analysis; FUNCTION APPROXIMATION; EMBEDDING DIMENSION; VECTOR QUANTIZATION; INPUT SELECTION; NEURAL-NETWORKS; ORDER; ALGORITHM; INFERENCE;
D O I
10.1007/s11063-015-9438-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a method to find the set of the most influential lags and the rule structure of a Takagi-Sugeno-Kang (TSK) fuzzy model for time series applications. The proposed method resembles the techniques that prioritize lags, evaluating the proximity of nearby samples in the input space using the closeness of the corresponding target values. Clusters of samples are generated, and the consistency of the mapping between the predicted variable and the set of candidate past values is evaluated. A TSK model is established, and possible redundancies in the rule base are avoided. The proposed method is evaluated using simulated and real data. Several simulation experiments were conducted for five synthetic nonlinear autoregressive processes, two nonlinear vector autoregressive processes and eight benchmark time series. The results show a competitive performance in the mean square error and a promising ability to find a proper set of lags for a given autoregressive process.
引用
收藏
页码:641 / 666
页数:26
相关论文
共 50 条
  • [1] Identification of Lags in Nonlinear Autoregressive Time Series Using a Flexible Fuzzy Model
    A. Veloz
    R. Salas
    H. Allende-Cid
    H. Allende
    C. Moraga
    Neural Processing Letters, 2016, 43 : 641 - 666
  • [2] Modeling a nonlinear process using the exponential autoregressive time series model
    Xu, Huan
    Ding, Feng
    Yang, Erfu
    NONLINEAR DYNAMICS, 2019, 95 (03) : 2079 - 2092
  • [3] Modeling a nonlinear process using the exponential autoregressive time series model
    Huan Xu
    Feng Ding
    Erfu Yang
    Nonlinear Dynamics, 2019, 95 : 2079 - 2092
  • [4] NONPARAMETRIC IDENTIFICATION OF NONLINEAR TIME-SERIES - SELECTING SIGNIFICANT LAGS
    TJOSTHEIM, D
    AUESTAD, BH
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) : 1410 - 1419
  • [5] Fuzzy Autoregressive Time Series Model Based on Symmetry Triangular Fuzzy Numbers
    Efendi, Riswan
    Imandari, Adhe N.
    Rahmadhani, Yusnita
    Suhartono
    Samsudin, Noor A.
    Arbai, Nureize
    Deris, Mustafa M.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2021, 17 (02) : 387 - 401
  • [6] NONMRAMETRIC IDENTIFICATION FOR NONLINEAR AUTOREGRESSIVE TIME SERIES MODELS:CONVERGENCE RATES
    LU ZUDI
    CHENG PING(Institute of Systems Science
    Chinese Annals of Mathematics, 1999, (02) : 173 - 176
  • [7] Nonparametric identification for nonlinear autoregressive time series models: Convergence rates
    Lu, ZD
    Cheng, P
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (02) : 173 - 184
  • [8] Forecasting time series using Vector Autoregressive Model
    Abdullah, Lemya Taha
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 499 - 511
  • [9] Nonlinear autoregressive exogenous time series: Structural identification via projection estimates
    Masry, E
    Tjostheim, D
    8TH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1996, : 368 - 370
  • [10] Time Series Generation Using Nonlinear Autoregressive Model Artificial Neural Network Based Nonlinear Autoregressive Model Design for the Generation and Prediction of Lorenz Chaotic System
    Zhang, Lei
    2018 IEEE 61ST INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2018, : 651 - 655