Domination and upper domination of direct product graphs

被引:10
|
作者
Defant, Colin [1 ]
Iyer, Sumun [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Domination number; Upper domination number; Direct product graph; Unitary Cayley graph; Jacobsthal's function; Balanced; Complete multipartite graph; UNITARY CAYLEY-GRAPHS; CONSECUTIVE PRIMES; LARGE GAPS;
D O I
10.1016/j.disc.2018.06.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-z/nz denote the unitary Cayley graph of Z/nZ. We present results on the tightness of the known inequality gamma (X-z/nz) <= gamma(t)(X-z/nz) <= g(n), where gamma and gamma(t) denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal's function. In particular, we construct integers n with arbitrarily many distinct prime factors such that gamma(X-z/nz) <= gamma(t) (X-z/nz) <= g(n) - 1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
  • [31] ON TOTAL DOMINATION IN THE CARTESIAN PRODUCT OF GRAPHS
    Bresar, Bostjan
    Hartinger, Tatiana Romina
    Kos, Tim
    Milanic, Martin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 963 - 976
  • [32] Italian Domination in Rooted Product Graphs
    R. Hernández-Ortiz
    L. P. Montejano
    J. A. Rodríguez-Velázquez
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 497 - 508
  • [33] Italian Domination in Rooted Product Graphs
    Hernandez-Ortiz, R.
    Montejano, L. P.
    Rodriguez-Velazquez, J. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (01) : 497 - 508
  • [34] Domination in Plithogenic product fuzzy graphs
    Bharathi, T.
    Leo, S.
    Davvaz, B.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2023, 19 (02) : 5 - 22
  • [35] Power domination of the cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 22 - 30
  • [36] Secure domination in rooted product graphs
    Rangel Hernández-Ortiz
    Luis Pedro Montejano
    Juan Alberto Rodríguez-Velázquez
    Journal of Combinatorial Optimization, 2021, 41 : 401 - 413
  • [37] Integer domination of Cartesian product graphs
    Choudhary, K.
    Margulies, S.
    Hicks, I. V.
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1239 - 1242
  • [38] Domination on tensor product of fan graphs
    Sitthiwirattham, Thanin
    International Journal of Applied Mathematics and Statistics, 2013, 50 (20): : 29 - 36
  • [39] ROMAN DOMINATION IN CARTESIAN PRODUCT GRAPHS AND STRONG PRODUCT GRAPHS
    Gonzalez Yero, Ismael
    Alberto Rodriguez-Velazquez, Juan
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 262 - 274
  • [40] From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
    Almerich-Chulia, Ana
    Cabrera Martinez, Abel
    Hernandez Mira, Frank Angel
    Martin-Concepcion, Pedro
    SYMMETRY-BASEL, 2021, 13 (07):