Domination and upper domination of direct product graphs

被引:10
|
作者
Defant, Colin [1 ]
Iyer, Sumun [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Domination number; Upper domination number; Direct product graph; Unitary Cayley graph; Jacobsthal's function; Balanced; Complete multipartite graph; UNITARY CAYLEY-GRAPHS; CONSECUTIVE PRIMES; LARGE GAPS;
D O I
10.1016/j.disc.2018.06.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-z/nz denote the unitary Cayley graph of Z/nZ. We present results on the tightness of the known inequality gamma (X-z/nz) <= gamma(t)(X-z/nz) <= g(n), where gamma and gamma(t) denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal's function. In particular, we construct integers n with arbitrarily many distinct prime factors such that gamma(X-z/nz) <= gamma(t) (X-z/nz) <= g(n) - 1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
  • [21] THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) : 19 - 30
  • [22] Upper minus domination in regular graphs
    Kang, L
    Cai, M
    DISCRETE MATHEMATICS, 2000, 219 (1-3) : 135 - 144
  • [23] On upper domination Ramsey numbers for graphs
    Henning, MA
    Oellermann, OR
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 125 - 135
  • [24] Double domination in rooted product graphs
    Cabrera-Martinez, Abel
    Estrada-Moreno, Alejandro
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 127 - 135
  • [25] Double domination in lexicographic product graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Rodriguez-Velazquez, J. A.
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 290 - 300
  • [26] Domination number of modular product graphs
    Bermudo, Sergio
    Peterin, Iztok
    Sedlar, Jelena
    Skrekovski, Riste
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [27] Dot product graphs and domination number
    Dina Saleh
    Nefertiti Megahed
    Journal of the Egyptian Mathematical Society, 28 (1)
  • [28] Secure domination in rooted product graphs
    Hernandez-Ortiz, Rangel
    Montejano, Luis Pedro
    Rodriguez-Velazquez, Juan Alberto
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 401 - 413
  • [29] Total Domination in Rooted Product Graphs
    Cabrera Martinez, Abel
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 11
  • [30] On the Roman domination in the lexicographic product of graphs
    Sumenjak, Tadeja Kraner
    Pavlic, Polona
    Tepeh, Aleksandra
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2030 - 2036