Stationary Quantum Vortex Street in a Driven-Dissipative Quantum Fluid of Light

被引:19
|
作者
Koniakhin, S. V. [1 ,2 ]
Bleu, O. [1 ,3 ,4 ]
Stupin, D. D. [2 ]
Pigeon, S. [5 ]
Maitre, A. [5 ]
Claude, F. [5 ]
Lerario, G. [5 ,6 ]
Glorieux, Q. [5 ]
Bramati, A. [5 ]
Solnyshkov, D. [1 ]
Malpuech, G. [1 ]
机构
[1] Univ Clermont Auvergne, Inst Pascal PHOTON N2, CNRS, SIGMA Clermont, F-63000 Clermont Ferrand, France
[2] St Petersburg Acad Univ, Nanotechnol Res & Educ Ctr, Russian Acad Sci, St Petersburg 194021, Russia
[3] Monash Univ, ARC Ctr Excellence Future Low Energy Elect Techno, Melbourne, Vic 3800, Australia
[4] Monash Univ, Sch Phys & Astron, Melbourne, Vic 3800, Australia
[5] Sorbonne Univ, Lab Kastler Brossel, PSL Res Univ, CNRS,ENS,Coll France, 4 Pl Jussieu, F-75252 Paris, France
[6] CNR NANOTEC, Ist Nanotecnol, Via Monteroni, I-73100 Lecce, Italy
基金
欧盟地平线“2020”;
关键词
POLARITON SOLITONS;
D O I
10.1103/PhysRevLett.123.215301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the formation of a new class of density-phase defects in a resonantly driven 2D quantum fluid of light. The system bistability allows the formation of low-density regions containing density-phase singularities confined between high-density regions. We show that, in 1D channels, an odd (1 or 3) or even (2 or 4) number of dark solitons form parallel to the channel axis in order to accommodate the phase constraint induced by the pumps in the barriers. These soliton molecules are typically unstable and evolve toward stationary symmetric or antisymmetric arrays of vortex streets straightforwardly observable in cw experiments. The flexibility of this photonic platform allows implementing more complicated potentials such as mazelike channels, with the vortex streets connecting the entrances and thus solving the maze.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum quenches in driven-dissipative quadratic fermionic systems with parity-time symmetry
    Starchl, Elias
    Sieberer, Lukas M.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [42] Decimation technique for open quantum systems: A case study with driven-dissipative bosonic chains
    Gomez-Leon, Alvaro
    Ramos, Tomas
    Porras, Diego
    Gonzalez-Tudela, Alejandro
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [43] Driven-dissipative quantum dynamics in ultra-long-lived dipoles in an optical cavity
    Barberena, Diego
    Lewis-Swan, Robert J.
    Thompson, James K.
    Rey, Ana Maria
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [44] Soliton Instabilities and Vortex Street Formation in a Polariton Quantum Fluid
    Grosso, G.
    Nardin, G.
    Morier-Genoud, F.
    Leger, Y.
    Deveaud-Pledran, B.
    PHYSICAL REVIEW LETTERS, 2011, 107 (24)
  • [45] Vortex formation and dynamics in two-dimensional driven-dissipative condensates
    Hebenstreit, F.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [46] Driven-dissipative phase transition in a Kerr oscillator: From semiclassical PT symmetry to quantum fluctuations
    Zhang, Xin H. H.
    Baranger, Harold U.
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [47] Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays
    Mascarenhas, Eduardo
    Flayac, Hugo
    Savona, Vincenzo
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [48] Few-Mode Geometric Description of a Driven-Dissipative Phase Transition in an Open Quantum System
    Krimer, Dmitry O.
    Pletyukhov, Mikhail
    PHYSICAL REVIEW LETTERS, 2019, 123 (11)
  • [49] Photon blockade and the quantum-to-classical transition in the driven-dissipative Josephson pendulum coupled to a resonator
    Pietikainen, I
    Tuorila, J.
    Golubev, D. S.
    Paraoanu, G. S.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [50] Optimal stochastic unraveling of disordered open quantum systems: Application to driven-dissipative photonic lattices
    Vicentini, Filippo
    Minganti, Fabrizio
    Biella, Alberto
    Orso, Giuliano
    Ciuti, Cristiano
    PHYSICAL REVIEW A, 2019, 99 (03)