Stationary Quantum Vortex Street in a Driven-Dissipative Quantum Fluid of Light

被引:19
|
作者
Koniakhin, S. V. [1 ,2 ]
Bleu, O. [1 ,3 ,4 ]
Stupin, D. D. [2 ]
Pigeon, S. [5 ]
Maitre, A. [5 ]
Claude, F. [5 ]
Lerario, G. [5 ,6 ]
Glorieux, Q. [5 ]
Bramati, A. [5 ]
Solnyshkov, D. [1 ]
Malpuech, G. [1 ]
机构
[1] Univ Clermont Auvergne, Inst Pascal PHOTON N2, CNRS, SIGMA Clermont, F-63000 Clermont Ferrand, France
[2] St Petersburg Acad Univ, Nanotechnol Res & Educ Ctr, Russian Acad Sci, St Petersburg 194021, Russia
[3] Monash Univ, ARC Ctr Excellence Future Low Energy Elect Techno, Melbourne, Vic 3800, Australia
[4] Monash Univ, Sch Phys & Astron, Melbourne, Vic 3800, Australia
[5] Sorbonne Univ, Lab Kastler Brossel, PSL Res Univ, CNRS,ENS,Coll France, 4 Pl Jussieu, F-75252 Paris, France
[6] CNR NANOTEC, Ist Nanotecnol, Via Monteroni, I-73100 Lecce, Italy
基金
欧盟地平线“2020”;
关键词
POLARITON SOLITONS;
D O I
10.1103/PhysRevLett.123.215301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the formation of a new class of density-phase defects in a resonantly driven 2D quantum fluid of light. The system bistability allows the formation of low-density regions containing density-phase singularities confined between high-density regions. We show that, in 1D channels, an odd (1 or 3) or even (2 or 4) number of dark solitons form parallel to the channel axis in order to accommodate the phase constraint induced by the pumps in the barriers. These soliton molecules are typically unstable and evolve toward stationary symmetric or antisymmetric arrays of vortex streets straightforwardly observable in cw experiments. The flexibility of this photonic platform allows implementing more complicated potentials such as mazelike channels, with the vortex streets connecting the entrances and thus solving the maze.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Optimal building block of multipartite quantum battery in the driven-dissipative charging
    Chang, Wei
    Yang, Tian-Ran
    Dong, Hui
    Fu, Libin
    Wang, Xiaoguang
    Zhang, Yu-Yu
    NEW JOURNAL OF PHYSICS, 2021, 23 (10):
  • [22] Driven-Dissipative Quantum Kerr Resonators: New Exact Solutions, Photon Blockade and Quantum Bistability
    Roberts, David
    Clerk, Aashish
    PHYSICAL REVIEW X, 2020, 10 (02)
  • [23] Joint quantum estimation of loss and nonlinearity in driven-dissipative Kerr resonators
    Asjad, Muhammad
    Teklu, Berihu
    Paris, Matteo G. A.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [24] Pseudothermalization in driven-dissipative non-Markovian open quantum systems
    Lebreuilly, Jose
    Chiocchetta, Alessio
    Carusotto, Iacopo
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [25] Truncated correlation hierarchy schemes for driven-dissipative multimode quantum systems
    Casteels, W.
    Finazzi, S.
    Le Boite, A.
    Storme, F.
    Ciuti, C.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [26] Quantum sensing with driven-dissipative Su-Schrieffer-Heeger lattices
    Arandes, Oscar
    Bergholtz, Emil J.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [27] Quantum memories for squeezed and coherent superpositions in a driven-dissipative nonlinear oscillator
    Labay-Mora, Adria
    Zambrini, Roberta
    Giorgi, Gian Luca
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [28] Self-organized time crystal in driven-dissipative quantum system
    Xiang, Ya-Xin
    Lei, Qun-Li
    Bai, Zhengyang
    Ma, Yu-Qiang
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [29] Entanglement and Replica Symmetry Breaking in a Driven-Dissipative Quantum Spin Glass
    Marsh, Brendan P.
    Kroeze, Ronen M.
    Ganguli, Surya
    Gopalakrishnan, Sarang
    Keeling, Jonathan
    Lev, Benjamin L.
    PHYSICAL REVIEW X, 2024, 14 (01)
  • [30] Exponentially faster preparation of quantum dimers via driven-dissipative stabilization
    Lim, Kian Hwee
    Mok, Wai-Keong
    You, Jia-Bin
    Kong, Jian Feng
    Aghamalyan, Davit
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):